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1 Introduction

This report contains the subsystem design of the VISTA IR Camera Wavefront Sensors,
presented for final design review on March 31% 2004,

The Wavefront Sensors work package comprises three key components: autoguider (or guide
sensor), low order curvature sensors (or low order wavefront sensors) and a high order
curvature sensor (or high order wavefront sensor). Together these systems fulfil the VISTA
project requirements for guiding and open and closed loop wavefront sensing. The design has
developed over the preliminary and final design phases to fulfil the requirements in the most
cost effective manner within the constraints imposed by the design of the IR Camera and
Telescope themselves.

The Wavefront Sensors successfully passed Delta-PDR on 2™ June 2003, six months after the
initial IR Camera PDR (10™ & 11™ December 2002). At the time of the PDR, difficulties
associated with the modelling of the performance of the sensors prevented compliance with
their requirements from being demonstrated. Over the following months intensive work
allowed these difficulties to be resolved and compliance was demonstrated at the Delta-PDR.
Steps have been taken to minimise the impact of the delayed (Delta) PDR on the detailed
design of the Wavefront Sensors and the design is currently trailing that of the rest of the IR
Camera by only three months.

The design of the VISTA IR Camera Wavefront Sensors has evolved from the Conceptual
Design, presented in RDO1, through the design for PDR, presented in ADOI1, to the final
design presented herein. AD02 presents the additional work required to allow the work
package to pass delta-PDR. ADO2 contains in particular the results of the extensive modelling
work undertaken to predict the aberration measurement accuracy of the curvature sensing
technique. AD15 is an additional design document presented at the IR Camera FDR to
demonstrate that there are no issues associated with the design of the wavefront sensors that
could prevent the Camera itself from passing FDR.

The following sections of this report present the optical, mechanical, electronics and software
design of the Wavefront sensors allowing it to be assessed against the requirements and the
terms of reference for the review:

“The FDR is a scrutiny to the detailed drawings, lists etc of the Final Design of a
development item. The Camera Team has been advised to interpret this as the provision of
detailed assembly drawings for each subsystem plus manufacturing drawings of any critical
components. The objective is to verify the conformance of the design with the technical
specification by review of the Final Design, the accompanying analyses, results of
development and qualification tests.”

The compliance matrix summarising the design requirements is presented in Appendix 1. The
requirements are derived from three key documents: the Camera Technical Specification

University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton

Laboratory Astronomy Technology Centre
< CLRC
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ADO3, the Cryostat-to-Sensors ICD ADO04 and associated drawings ADOS5, and the Sensors
Subsystem Requirements ADO06.

1.1 Terminology

1.1.1 LOWEFS, LOCS, HOWFS, HOCS

Throughout this and the other FDR documents the reader will find reference to both Low
Order Curvature Sensors (LOCS) and Low Order Wavefront Sensors (LOWES). The IR
Camera Technical Specification [ADO3] specifies the requirements that the Low Order
Wavefront Sensor must fulfil but without specifying what type of sensor should be used. In
the VISTA IR Camera Wavefront Sensor Work Package, the Low Order Sensors have been
implemented as Curvature Sensors. The term LOCS is therefore the name of the sensor that
fulfils the LOWFS requirements. The two names in effect both refer to the same pieces of
equipment.

The same is true for the High Order Wavefront Sensor (HOWFS) which is also implemented
as a Curvature Sensor (HOCS) utilising optics placed in the Camera filter wheel. So again the
two names, HOWFS and HOCS, both refer to the same system.

In general, the project software documentation refers to LOWFS and HOWFS, whereas the
sub-system design documentation refers to LOCS and HOCS.

1.1.2 TCCD Controller, SDSU

Within this and the other IR Camera documents, reference is made to both Technical CCD
Controllers (TCCD Controllers) and SDSUs. The ESO TCCD Controller comprises: a control
electronics box; CCD head connection cables; fibre optic cables; and a PMC (PCI
Mezzanine) interface card. Following their recent tender exercise, ESO will be procuring
these systems from Astronomical Research Cameras Inc. The controllers are commonly
known as SDSU (San Diego State University) controllers throughout the astronomical
community and are currently in their third generation (SDSU III). The term “SDSU” is used
therefore to refer to the control electronics box alone, four of which will be mounted on the
rear of the IR camera to control the WFS CCDs.

Some IR Camera software documentation also makes reference to the term ACE (Array
Control Electronics). This is the name of ESO’s older generation of controllers which the
TCCD Controller supersedes.

University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton

Laboratory Astronomy Technology Centre
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2 Acronyms and Abbreviations
ACE Array Control Electronics
AG Auto Guider
AIT Acceptance, Integration & Test
BI Back Illuminated
CCD Charge Coupled Device
CIQ Camera Image Quality
CS Curvature Sensor / Sensing
CTE Coefficient of Thermal Expansion
DML Declared Materials List
EF (Curvature Sensing Image Analysis Software Package)
EMC Electro-Magnetic Compatibility
EMI Electro-Magnetic Interference
ESO European Southern Observatory
FDR Final Design Review
FEA Finite Element Analysis
FET Field Effect Transistor
FOV Field Of View
FPA Focal Plane Array
FT Frame Transfer
HOCS High Order Curvature Sensor
HOWES High Order Wavefront Sensor
ICD Interface Control Document
IR Infrared
IRACE Infrared Array Control Electronics
LCU Local Control Unit (VME Processor Card)
LOCS Low Order Curvature Sensor
LOWFS Low Order Wavefront Sensor
NIMO Non-Inverted Mode Operation (CCD)
PCB Printed Circuit Board
PCI Peripheral Component Interconnect (Computer Data Bus Standard)
PDR Preliminary Design Review
PMC PCI Mezzanine Card
QE Quantum efficiency
RC Resistor Capacitor (Electronic Load)
RMS Root Mean Square
SDSU San Diego State University CCD Controller
SH Shack-Hartmann
TCCD Technical CCD
TCS Telescope Control System
TIM Time Interface Module
VISTA Visible and Infrared Survey Telescope for Astronomy
RS . Rutherford
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VLT Very Large Telescope (ESO Paranal Observatory)
VME Versa Module Europa (19” Rack Data Bus Standard)
WFCAM Wide Field Camera
WEFS Wavefront Sensor
WP Work Package
ZEMAX (Optical Design Software Package)
. . . Rutherford
University of Durham
@ Astronomical Instrumentation Group Appleton UK
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5 System Overview

The key components of the Wavefront Sensor system, within the Camera cryostat, are:

e Two identical combined Low Order Curvature Sensor (LOCS) / Autoguider (AG)
Units, subsequently referred to as LOCS/AG Units, positioned on the IR Camera
WES Plate, above the Filter Wheel, on opposite sides of the field of view, each
containing:

o A pickoff mirror, to divert light into the unit
o A filter to limit the wavelengths used by the unit to 720-920nm (I-band) and
also attenuate any science band wavelengths reflected back out into the IR

Camera

A cube beamsplitter to divide light between the pair of curvature sensor CCDs

and reflect light to the autoguider CCD

Two 2Kx2K curvature sensor CCDs

One 2Kx1K frame-transfer autoguider CCD

A PCB containing CCD buffer and protection circuitry

A Mechanical assembly

CCD heating resistors

o Temperature sensing diodes

e Two flexible circuit wiring harnesses to connect the LOCS/AG units to hermetic
connectors on a cryostat port

e The beam-splitting optic components of the High Order Curvature Sensor (HOCS),
housed in the intermediate positions of the filter wheel, placing pre- and post-focus
images of a single star simultaneously on one (or more) of the science detectors

O

O 0O 0O 0O

External to the Camera cryostat are:

Four ESO Technical CCD Controllers (mounted on the camera)

24V Power Supply (mounted on the camera)

Fibre optic cables

A split-backplane VME Rack containing four LCU processor cards with PMC fibre
interface cards and ESO TIM cards (elsewhere in the telescope enclosure)

A guide workstation (in the VLT control room)

e A wealth of purpose-written, ESO compliant software

Figure 5.1 shows a cross section of the complete VISTA IR Camera. Figure 5.2 is an extract
from the Camera System Block Diagram [RD14] showing the electrical components outlined
above. Figure 5.3 shows the location of the two LOCS/AG units within the camera cryostat.
Figure 5.4 shows one HOCS optical component in relation to the camera window and lenses.
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Figure 5.2: WFS Electrical Block Diagram
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Figure 5.3: Location of the Two LOCS/AG Units
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Figure 5.4: HOCS Optical Component
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6 LOCS/AG Unit Design

This section describes the design of the LOCS/AG unit including optical, mechanical,
electronic and thermal aspects of the design. The software associated with these systems is
described in a later section.

6.1 Requirements

The requirements for the LOCS/AG units, including individual requirements for the LOCS
and AG, are summarised in Appendix 1.

The main constraints on the optical and mechanical design of the LOCS/AG units come from:

e Requirements 2,3,22 and 23 which govern the location of the sensors within the field
of view

e Requirements 21 and 24 which make the provision of two LOCS sensors necessary,
one on either side of the FOV

e Requirements 57-60 which specify optical clearances between the sensors and the
science beams, mechanical constraints (e.g. clearance above the FPA and hence filter
wheel) and mounting details

6.2 CCD Selection

As described in ADO1 sections 5.4 and 5.5, the required footprint of the LOCS and AG are
both equivalent to 2Kx2K 13.5pum pixels. The calculation of this footprint is re-validated in
sections 6.2.1 and 6.2.2 below. In order to make the LOCS/AG unit design symmetrical, to
avoid detector vignetting and to provide the required frame rate, the combined AG footprint
is provided by two 2Kx 1K frame transfer CCDs, one mounted alongside the LOCS in each of
the two identical LOCS/AG units.

The CCDs themselves are custom-packaged (Invar) deep-depletion frame-transfer-wired
variants of E2V’s CCD4240 (BI, NIMO) as described in ADO02 section 8. To maximise cost
effectiveness and minimise the need for spares, a single detector type will be procured but
with two different mask options. The autoguider CCD in each unit will be equipped with a
mask that covers half the chip allowing it to be used in frame transfer mode. The curvature
sensor CCDs will have masks that cover the 40 columns nearest the readout register
providing a storage area for the defocused star image during readout. AD16 provides the
technical specification for the devices. CCD procurement is underway and the delivery
schedule is in line with the Camera project plan.
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6.2.1 Validation of AG FOV

The requirement for the autoguider field of view is defined in ADO03 4.5.3 e) and specifies
that the field must be big enough for there to be a 99% probability of a suitably bright guide
star being visible for any desired exposure on sky at full moon (requirement 5). In the
conceptual design [RDO1] the required autoguider field was calculated backwards through a
guide star R-band magnitude of 15.6 from a desired signal to noise ratio of 20. In Appendix
13 section 1 this calculation is re-validated but, rather than working backwards from a desired
signal to noise ratio, the delivered signal to noise ratio is calculated using the chosen 2Kx2K
combined AG footprint with an [-band star magnitude of 15.2. This 99% guide star brightness
is calculated from the Gemini (D. Simons) model of R-band star availabilities at the galactic
pole for the equivalent autoguider field radius and is adjusted for I-band.

The signal to noise ratio is calculated as:

> f, b

obj

JEE, + £, + £, + Num, o

obj bg

where:

Num,;x is the number of pixels the object image is spread over
fop; 1s the flux rate for the object (e7/sec)

fi,¢ 1s the flux rate for the sky background (e”/pixel/sec * Numy,;x)
faark 18 the dark current rate (e”/pixel/sec * Numy;y)

t is the exposure time

014 18 the detector read noise (¢)

As shown in Appendix 13 section 1, the autoguider will deliver a signal to noise ratio of 25
using an exposure time of 90ms (made possible by the CCD frame transfer architecture).

6.2.2 Validation of LOCS FOV

The low order curvature sensor signal to noise ratio is calculated in the same way as that for
the autoguider but using an exposure of 30s and spreading the signal over a larger number of
pixels due to the Imm defocus distance. Appendix 13 section 2 contains the result of this
calculation showing that the sensor signal to noise ratio will be 150 hence meeting
requirement 30 with ample margin.

A magnitude 16 star observed with the same 30-second exposure would still deliver a signal
to noise ratio of 87.
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6.2.3 Operation after sunset

Requirement 8 specifies that the autoguider should be operable 30 minutes after sunset using
a suitably bright guide star. In order to calculate if this is achievable, the same spreadsheet
was used and adjusted as follows:

e A minimum exposure time of 10ms was selected

e The guide star magnitude was adjusted to provide a signal of 60,000¢” in this same
exposure time

e The sky brightness was then adjusted until the resulting signal to noise ratio was close
to 7 (the minimum for reliable operation of the guider)

The calculation shown in Appendix 13 section 3 concludes that a guide star magnitude of 9.2
provides a signal to noise ratio of 7.8 with a sky brightness of 3 mag/arcsec’. This calculation
is somewhat nonsensical since 3 mag/arcsec” is roughly equivalent to daylight and the camera
itself would saturate almost immediately.

Using a more realistic sky brightness of 13 mag/arcsec” and an exposure of 50ms, it would be
possible to guide on a magnitude 14 star with a signal to noise ratio of 19.3.

6.2.4 Autoguider frame rate

As discussed in ADO02 section 7, the 10Hz autoguider frame rate requirement has already
been demonstrated with the CCD4240, fulfilling requirement 6.
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6.3 Optical Design

The optical design of the LOCS/AG units was undertaken by Richard Bingham. His design
report is included as Appendix 6. Further detail on the LOCS aberrations is given in
Appendix 14.

The chosen LOCS design is based upon the use of a cube beamsplitter to divide light between
the two CCDs. A cross-section of the design is shown in figure 6.3.1, reproduced from
Appendix 6.

920nm short pass

filter coating
—

Principal CCD] —~
Pick-off mirror

Cube beamsplitter RGY Filter
(AR coated)
3D _LAYOUT
FRONT-SURFACE MIRROR AND CUBE-TYPE BEAMSPLITTER RGB
TUE NOU 11 2003 —

SCALE: 2.0000 10.92 MILLIMETERS

TEL+CUBE13B . ZMX
CONFIGURATION: ALL 2

Figure 6.3.1: Cross-section of the LOCS/AG optical path

During the detailed design phase, it became clear that it would not be possible to continue to
use the single plate beamsplitter design proposed at CoDR and PDR. The plate beamsplitter
would have introduced significant aberrations in the transmissive path to the principal CCD
due to the optical path difference across the converging beam as it passes through the tilted
plate. Correct operation of the LOCS would have been prevented by the different aberrations
‘seen’ by each CCD. The cube design overcomes this problem. The cube beamsplitter design
has been tested successfully in a cryogenic qualification test, the results of which are included
in Appendix 11. An alternative non-cemented beamsplitter design is available as a fall-back
(Appendix 7) but this is not considered necessary.
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A 3D view of the optical components, including rays to the corners of the detectors is shown
in figure 6.3.2. It is important to note that Appendix 6 was written and figure 6.3.2 produced
before a decision was taken to rotate the autoguider CCD through 90 degrees. This was
necessary to prevent the CCD package from violating the sensor space envelope. Figure 6.3.3
shows the correct equivalent footprint of the LOCS and (rotated) AG CCDs superimposed on
the camera FOV.

-~y

Figure 6.3.2: 3D Optical Representation of the LOCS/AG Components

Edge of nearest
science detector

SCALE: 200.0000 MILLIMETERS

LOCS

LOCS]

APERTURE DIAMETER: 345.4000 /4 RAYS THROUGH = 78.93/%
FOOTPRINT DIAGRAM

VISTA IRCAM FLAT WINDOW MODELAM RGB

TUE DEC 16 2003

SURFACE 43: DETECTOR

RAY X MIN = -13.8473 RAY X MAX
RAY Y MIN = -167.1436 RAY Y MAX
MAX RADIUS= 167.7129 WRAVELENGTH
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-108.0153 TEL+FIELDS_16V.ZMX
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Figure 6.3.3: Footprint of the LOCS/AG CCDs on Camera FOV
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6.4 Filter Selection

The LOCS/AG unit is required to utilise a wavelength pass-band which:
e s as close as possible to the science wavelengths
e is within the capabilities of CCDs
e avoids worsening sky OH lines beyond 920nm

The chosen pass-band has therefore been selected as 720nm to 920nm, pseudo-I band.

As described in ADO02 section 8, the chosen CCDs will utilise deep-depletion (high-
resistivity) silicon to maximise QE at these long wavelengths and to minimise the fringing
normally experienced by thinned CCDs at these same wavelengths.

The LOCS/AG filter could be implemented using a normal interference filter coating on
glass. However the filter also needs to be able to suppress the rejected science wavelength
light that would otherwise be reflected back out into the camera cryostat.

As described in ADOlsection 5.8, the filter will be implemented using 3mm-thick Schott
RGO filter glass which absorbs light below 700nm and above 1100nm. A 920nm short pass
coating will be applied to the rear of the RG9 and a broad band AR coating to the front. The
throughput to the CCDs will therefore be as shown in Figure 6.4.1.

WFS Throughput
1
0.9 -
0.8
0.7 1
©
2 06 A —e— RGO Transmittance
,33 05 | —=— 920nm Short Pass Coating
5 CCD QE
o 04 4 —e— Total
|
0.3
0.1 j \:
0 T T T T T T T T T T T T ¢ ;4\!
o LV O 1’ O W O O 1V O W O W O v O
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Figure 6.4.1: WFS Throughput
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RGY has an unfortunate second pass-band centred on 2500nm as shown in figure 6.4.2. A
stray light analysis has been performed to demonstrate that the science wavelength light
reflected off the 920nm filter coating and which exits the RG9 after a second pass (6mm)
does not cause unwanted ghosting on the science array. The analysis is presented in
Appendix 9 and concludes that a magnitude 1 star image reflected back from the filter will
cause ghosting equivalent to 1% of the sky background in Y and Zsloan. The ghosting is
therefore considered acceptable and the RG9-based design valid. If the RG9 were to be
replaced by standard glass then the same level of ghosting would occur from a magnitude 5
star.

RG9 Internal Transmittance

vs Thickness (mm)
0.9 -
B
o \
i

s |1
s ] || s
ol \ -
os | 4]
/

L

Transmittance

Wavelength (nm)

Figure 6.4.2: RG9 Transmittance

6.5 Science Beam Clearance

The optical design of the LOCS/AG units allows the CCDs’ view to sky to be unvignetted
and the equivalent detector footprint to be positioned several millimetres away from the edge
of the Camera FOV (see figure 6.3.3). The lowest surface of the cube beamsplitter has been
positioned 46mm above the focal plane (Requirement 58) and the extreme edge of the pick-
off mirror is positioned the required 1mm away from the nearest science beam (Requirement
59) while also allowing a 0.5mm gap between the WFS beam and the edge of the mirror such
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that the mirror does not have to be polished to its extreme edge. Appendix 10 illustrates these
details.

6.6 Alignment Sensitivity

The optical design of the LOCS/AG unit utilises the angle of the pick-off mirror to
desensitise the system to misalignment in Y relative to the optical axis. Lines extended from
the surfaces of the mirror and principal CCD would meet on the focal plane (without WFS or
science filters present). Figure 6.6.1 illustrates this. In this way, any misalignment in Y (or X)
only results in a shift of the part of the Camera FOV seen by the CCDs and not a change in
focus.

Surface Pole of L3 (252.899mm)

Nearest Edge of Science Beam

CCD Mirror
45mm Clearance Above FPA

Focal Plane without Science Filters

\ \ l | |

e

Figure 6.6.1: Positioning of the WFS Pick-off Mirror and Principal CCD

An analysis of the (mis-) alignment sensitivity has taken place and is included in Appendix
12. A movement of the unit by up to Smm in either X or Y will introduce a maximum P-V
change in the image aberrations of less than 0.3 waves, much less than the static aberrations
always seen by the sensors (see also RDIS5 section 10 and ADO1 section 7.4). This
insensitivity lessens the impact of the unit focus requirement (69 & 70).

The LOCS/AG unit will be accurately internally aligned, relative to the external reference
marks and alignment surfaces specified in the ICD [ADO04], by precision shimming of the
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optics and detectors (if required). The WFS shuffle plates on the WFS frame will be
positioned accurately during Camera AIT. The philosophy behind the alignment of the
LOCS/AG units is that each of the two units (or three if the manufacture of a spare is
requested) will be internally aligned such that the units are fully interchangeable. The metal
parts of the units will be machined accurately such that internal shimming should not be
necessary but this remains an option if required.

The insensitivity to misalignment has an additional benefit in that changes in the WFS plate
temperature and hence radial contraction/expansion due to ambient temperature changes will
not introduce significant aberrations either (see RD09 section 6.2).

6.7 Mechanical Design

The mechanical design of the LOCS/AG units is governed by the physical location of the
optics and detector surfaces from the optical design plus the mechanical and mounting
constraints imposed by the Sensors to Cryostat ICD [AD04]. As can be seen from the
mechanical drawings of the LOCS/AG unit in Appendix 3, the design complies with the
requirements of the ICD (58-61). The internal construction of the LOCS/AG units is as
shown in the following figures. The mechanical components of the LOCS/AG units will be
made from the same Aluminium alloy as the WFS plate.

[Autoguider
CCD

Curvature
Sensor CCD

b i W

A |

Pick-off mirror 2 o o
Principal Curvature
Sensor CCD

Cube Beamsplitter

Figure 6.7.1: LOCS/AG Optics and Detectors, Side View
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Figure 6.7.2: LOCS/AG Optics and Detectors
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Figure 6.7.3: LOCS/AG Unit Transparent Side View
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Figure 6.7.4: LOCS/AG Unit Transparent View (Cover Removed)

Figure 6.7.5: LOCS/AG Unit External View
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Figure 6.7.6: LOCS/AG Unit External View

Figure 6.7.7: LOCS/AG Unit External View
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Figure 6.7.8: LOCS/AG Optics Retaining Springs

Figure 6.7.9: LOCS/AG Optics Retaining Springs
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6.8 CCD Mounting & Alignment Features

Full drawings of the CCD package are contained in Appendix 3, although these may later be
modified by E2V during the design phase of the CCD procurement. Figure 6.8.1 illustrates
the mounting and alignment features on the rear of the package. Kinematic location pins on
the front surface of the package allow the detector substrate to be accurately positioned
during manufacture relative to the rear central and rotation-constraining pins.

Precision shim

Central alignmet pin : _
;

Rotation-constraining pin

Figure 6.8.1: CCD Mounting & Alignment Detail

Three mounting pads are provided on the rear of the CCD package. The CCD manufacturer
will fit precision shims to these pads to position the detector surface to a tolerance of £20um.

A central alignment pin is provided to allow the active centre of the detector to be positioned
accurately. A second pin is provided to constrain detector rotation. The central pin fits into a
round hole in the appropriate CCD plate, the rotation constraining pin fits into a
corresponding slotted hole.

The three mounting screws will pass through clearance holes in the CCD plate, to allow for
the difference in thermal expansion between the Invar detector package and the Aluminium
plate, before being secured with insulating washers.
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6.9 Thermal Design
The thermal design of the LOCS/AG units is summarised in figure 6.9.1.

-
AG E
Cl-r?tgier Auto Guider CCD
~170K
&
s
Curvature Sensor CCD
@1 (1 0f 2)
~170K
Mount
plus Strap
rocn (if required)
TCCD
Controller Curvature Sensor CCD
(2 0f 2)
@1 ~170K

LOCS/AG Assembly: ~80K

Figure 6.9.1: LOCS/AG Unit Thermal Design

The LOCS/AG CCDs are to be maintained at a constant temperature of approximately 170K.
The temperature needs to be above 150K for correct operation and below 210K to reduce the
dark current to acceptable levels [AD15 9.1]. The WEFS plate temperature will be maintained
at approximately 80K by the camera cold head system [RD09, Tables 6.2-1 and 6.1-2]. The
CCDs will be slightly over-cooled by thermal conduction into the CCD plates, through the
remainder of the LOCS/AG unit assembly and into the surrounding WFS plate. Provision has
been made to include additional cooling straps between the LOCS/AG units and the WFS
plate should the thermal path through the intermediate mounting surfaces not be sufficient.
CCD temperatures will be servo-controlled by the ESO TCCD Controllers via heating
resistors and temperature sensing diodes. Each Controller has two temperature-sensing
channels and one heating channel. For the LOCS, each CCD will have its temperature
monitored by a single diode and heating power shared between each pair. For the AG, the
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temperature of the CCD will be monitored by one diode, the other being used to monitor the
temperature of the surrounding metalwork.

The power dissipated by each LOCS CCD will be of the order 250mW while the AG CCD
will dissipate of the order 760mW due to its almost constant clocking. The total power
dissipation of the two LOCS/AG units is presented in AD15 section 9.1.

At the time of writing, it has not been possible to fully detail the interface between the
individual detectors and the CCD plates due to difficulties with accurately modelling the heat
flow between the two. A qualification test will take place post-FDR to establish if the chosen
metal-to-metal mounting design, which is preferable from a manufacture and alignment
perspective, is fully viable in terms of the required thermal insulation. It may be necessary to
revise the mounting detail to include additional insulation if the qualification test indicates
this is necessary. This is regarded as fine detailing of the design and is not considered a
significant risk item but will be entered into the IR Camera Risk Register. The CCD pad
mount detail currently being investigated is shown in figure 6.9.2. Currently the approximate
heat flow through this design is 0.4W per pad, which would require the servo heating load to
be increased to ~1W per detector. An allowance of 10W is made for the two LOCS/AG units
within the IR Camera Thermal Analysis [RD09] and so this additional heat load would still
be within budget but attempts will be made to minimise this.
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Figure 6.9.2: CCD Plate Detector Pad Mounting Detail

6.10 LOCS/AG Unit Mass

Diameter of CCD
Mounting Pad (10mm)

Clearance Hole for
CCD Mounting Screw

Contact Area Between
CCD and Plate (1/3)

The predicted mass of each complete LOCS/AG unit has been confirmed as 2.25kg, matching
the value that was presented at Camera FDR [AD15 section 7] and used in the FEA analysis

[RDOS].

6.11 Contamination Control

The LOCS/AG units will be assembled and stored in a class 100 clean area and only brought
out into a class 10,000 clean area for optical and electrical testing. The CCDs will be
delivered in suitable packaging by the manufacturer [AD16 section 7.18]. All other
components will be cleaned prior to assembly. The complete units will be suitably packaged

prior to shipping to RAL for integration.

University of Durham Rutherford
Astronomical Instrumentation Group Appleton

Laboratory b=

UK

Astronomy Technology Centre



/'ﬁ Doc. Number: | VIS-DES-UOD-06042-0001
0 Date: 8™ March 2004
Y Wavefront Sensors
. Issue: 3.0
o — "k Subsystem Design

Page: Page 36 of 36
IR Camera Author: Paul Clark

6.12 Electrical Design

The electrical design of the LOCS/AG unit buffer and protection PCB plus harness is
described in the following sub-sections. Appendix 4 contains the: grounding diagram; harness
diagram; board schematics; board layout and parts list for the LOCS/AG units.

6.12.1 Clocks

The TCCD Controller clock board ground has been chosen as the point of reference for Vss,
meaning that the clock signals will swing between -9 and +1V.

6.12.2 ESD and Over-Voltage Protection

To protect against ESD damage, all signals connected to the CCD are also connected to a
transient voltage suppressor chip from the SP72x series: the 16 pin SP720 or 8 pin SP721.
These chips have been used extensively and successfully in other astronomical instruments
including WFCAM.

The chips are silicon-controlled rectifiers and contain active circuitry that will clamp the
input signal to the power rail if it exceeds the power rail voltage by a forward diode drop
(~0.7V). By connecting a Zener diode to act as a reference to the power rails, it is possible to
control the cut-off voltage. Diodes with a Zener voltage of 30V have been chosen for this
board.

Over-voltage protection is provided by Zener diodes on the SDSU boards.

6.12.3 Filtering

A standard filtering system has been used to remove high frequency noise and provide
decoupling and bypassing for the bias and the power signals. It is shown below.

V_JD_AD 1m2 - GJD_A
100
L C1 <. C8
00 Ty 7
L

Figure 6.11.3.1: Diagram showing filtering used on bias line V_JD_A
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6.12.4 PCB Layer Stack-Up

The following layer stack-up was chosen to allow easy routing and adequate separation of
traces.

Layer Type Signals Allowed
Top Primary Component Layer, Routing Bias, Outputs
Inner Layer 2 Ground Split/Mixed Plane Layer GND, AGND
Inner Layer 3 Routing Bias Outputs
Inner Layer 4 Plane JD A,JD B, AG JD
Inner Layer 5 Ground Split/Mixed Plane Layer GND, AGND
Inner Layer 6 Routing Clocks
Inner Layer 7 Ground Split/Mixed Plane Layer Vss, AGVss
Bottom Secondary Component Layer, Routing | Clocks

Table 6.11.4.1: PCB Layer Stack-Up
6.12.5 Grounding

6.12.5.1 Vss

The CCD uses Vss as substrate and, upon recommendation from Guy Woodhouse (who
quoted Jamey Ericsson), this should be provided by the ground on the clock board.

6.12.5.2 SDSU tricks

Previous experience has shown that for optimum performance the video board ground should
be connected to the clock board ground at the output connector. These in turn, should both be
connected to the chassis of the SDSU, which acts as the star point of the system.

6.12.6 Separation of Analogue and Digital

Bias and outputs are kept on the upper layers of the board, clock signals on the lower half
with a power and ground core.

Flexibility in the design has been provided by the use of jumpers JP4, JP10, JP11 and JPI3.
The analogue plane layers can be connected to either Vss or to the GND signal from the
SDSU video board, which is brought in as a bias.

6.12.7 Outputs

Although we are planning to read out each CCD through one channel, both amplifiers are
connected to buffer amplifiers. Selection of the output channel is provided by zero ohm
resistors, fitted as required. This will allow us to choose the best readout channel should there
be a difference, and also provide an element of redundancy should a problem arise with one
of the on-chip outputs. There are software implications here and it will be necessary to liaise
with the project software engineers before making such a decision.

University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton

Laboratory Astronomy Technology Centre
< CLRC



/'ﬁ Doc. Number: | VIS-DES-UOD-06042-0001
0 Date: 8™ March 2004
Y Wavefront Sensors
. Issue: 3.0
o — "k Subsystem Design

Page: Page 38 of 38
IR Camera Author: Paul Clark

In order to reduce noise in the long cable run, we will use a pseudo differential wiring
scheme. This involves the use of an identical trace to run alongside the actual output, thereby
picking up the same noise. This common-mode noise is then rejected at the differential
amplifier in the SDSU due to its inherent design. To maintain similar characteristics for both
signal traces, a matched-pair JFET is used, where the transistors are specifically
manufactured to be as close in performance as possible. To simulate the CCD output, a
resistor equal to the CCD output resistance is connected to the substrate voltage.

JU_A =
: : 3 5
OSL_A @ 01-A 018 LA
1 4
Sy e —VIDA- 252
Col? e aapreg Vo1
2 0 .
1RE2 g —VIDA+
0
-
Wss

Figure 6.11.7.1: Diagram showing circuit configuration for output OSL_A4

6.12.8 Cable Run

The CCD cable harnesses will be implemented as flexible circuits. Due to the curved path
that the LOCS/AG cables must follow through the cryostat (see ICD ADO04) it is envisaged
that each cable will be made as a single piece since the overall dimensions are within the
capabilities of standard flexible circuit manufacturers.

6.12.8.1 Cable harness

There will be 5 virtual cables inside the curvature sensors’ overall wrap: temperature
measurement and control; Output from CCDA; Output from CCDB; Bias Signals; Clock
Signals. The autoguider cable follows the same principle, but as there is only one CCD, there
will thus be only 4 virtual cables.

Each of the 9 virtual cables has their own cable screen connected at the SDSU end to the
indicated ground. The option of continuing the screen onto the circuit board is provided, but
it is envisioned that this will not be necessary.

6.12.8.2 Flexible Circuit

As stated above, it is anticipated that the flexible circuits will be manufactured as single items
due to their limited overall dimensions. Should this not prove possible, we will adopt the U-
bend technique already used by ESO to manufacture longer straight circuits.
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6.12.9 Cryostat Connectors

The LOCS/AG unit cryostat connectors are as shown in the following table and comply with
those specified in the ICD [see: AD04 section 9, requirement 62 and AD15 section 10].

Signals Connector
AG Clock/Bias/Temperature MIL-C-26482, Size 22, 55 Pins
AG Video MIL-C-26482, Size 16, 26 Pins
CS Clock/Bias/Temperature MIL-C-26482, Size 22, 55 Pins
CS Video MIL-C-26482, Size 16, 26 Pins
Thermal Protection Heating Circuit MIL-C-26482, Size 14, 12 Pins

Table 6.11.9.1: LOCS/AG Cryostat Connections
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7 HOCS Optical Design

The design of the HOCS optics was undertaken by Richard Bingham. His design report is
included as Appendix 8.

7.1 Overview

The HOCS optical design is based on the use of a two-layer cube beamsplitter. Based on an
original idea by Martin Caldwell, this optical element delivers pre- and post-focus images
from a single star simultaneously. The optic and its ray-trace are reproduced in figure 7.1.

Partially Reflective

IScience Band Filter Coating| Coatings AR Coating

NNNE =
T ]
L ‘F“v :
5 Main Images

Figure 7.1: HOCS Optical Element and Ray Trace

A qualification test of the use of cemented cube beamsplitters in a cryogenic environment has
been performed and documented in Appendix 11.

7.2 Options

One or more HOCS optical elements will be installed in the mini-filter intermediate filter
wheel positions.

There are a number of possible permutations:

e Three versions of the HOCS optical element are shown in Appendix 8 providing
defocus distances of Imm, 1.5mm and 2.1mm respectively. The analysis of curvature
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sensing aberration measurement [section 9 and ADO02 section 6.2] has shown that
larger defocus distances provide better measurement accuracy on high order
aberrations. Smaller defocus distances provide better accuracy on low order
aberrations. Currently the modelling indicates that the optimum defocus distance is
Imm. However, since the three designs are available, multiple optical elements could
be procured and installed if required.

e The optical element can be coated with any desired science wavelength filter coating,
J and Ks being the most popular choices. The coating performance does not need to
match that of the actual science filters since throughput is far less of an issue since an
arbitrarily bright star can be selected.

e The optical elements can be installed in multiple mini-filter positions to allow
sensing: as close to on-axis as possible; at extreme -X, near-zero Y; and at extreme Y,
near-zero X.

The final combination of HOCS elements will be selected by the project scientists within the
available budget.

7.3 Dimensions

The HOCS optical element dimensions are shown in Appendix 8 Table 1. These dimensions
have been distributed within the IR Camera Team allowing the design of the filter wheel
mini-filter holders to be detailed in due course.

7.4 Validation of HOCS Star Availability

In the same way that the LOCS field of view is re-validated in section 6.2.2, Appendix 13
section 4 contains a calculation of the delivered signal to noise ratio for the J-band HOCS.
There is a 99% probability of finding a J-band magnitude 8.4 star within 0.5° of the pole. Ata
full moon sky brightness of 15.9 mag/arcsec® and an exposure time of 60 seconds, a signal to
noise ratio of over 2000 is delivered. This adequately fulfils requirement 44.

Using a magnitude 8.4 star may cause saturation problems on the brighter extra-focal image.
The spreadsheet calculation therefore predicts that a magnitude 12 star observed with a 10
second exposure would still deliver a signal to noise ration of 72.6.
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8 Aberration Measurement Accuracy

ADO02, reviewed at the WFS delta-PDR, contains detailed information on the curvature sensor
technique and the intensive work that was carried out to predict the aberration measurement
accuracy of both the LOCS and HOCS.

The analysis has concluded that both the LOCS and HOCS will deliver the required accuracy.

8.1 LOCS Predicted Accuracy

Sections 5.2 and 5.3 of ADO2 predict that the LOCS will achieve the required accuracy of
30nm RMS per term from Z4 to Z10 (defocus, astigmatism, coma and trefoil) in the presence
of aberrations up to +120nm from their nominal value in 0.75” seeing (requirement 27 & 28).

Closed loop performance of the LOCS is described in section 7.5.2 of ADOI (requirement
29).

8.2 HOCS Predicted Accuracy

Section 6.2 of ADO02 predicts that the HOCS will achieve the required Root-Sum-Square
accuracy of <50nm from Z4 to Z25 in the presence of a spectrum of aberrations up to 200nm
from their nominal value (requirement 46). It should be noted that the HOCS requirement
was changed in issue 2 of the IR Camera Technical Specification from an across-the-board
required accuracy of 10nm RMS per term to the Root-Sum-Square figure quoted above.

8.3 Required Integration Time

Requirement 45 specifies that the HOCS must be able to deliver the required aberration
measurement accuracy within a total exposure time of <180s. To investigate if this is indeed
achievable, a simulation of the variance of atmospheric aberrations against exposure time was
carried out. The results of the simulation are shown in figures 8.3.1 and 8.3.2 below and
illustrate that atmospheric aberrations achieve a Root-Sum-Square variance of 50nm in an
exposure time of 64 seconds (including tip and tilt).

The simulation parameters were:

Fried Turbulence Parameter (ro) =20 cm

Telescope Diameter (D) = 4m

Wind speed for turbulent layer = 10ms™

The Standard Deviation is proportional to (D/ro)"(5/6)
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STD of Zernike Terms Versus Integration Time
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Figure 8.2.1: Variation of Zernike Terms vs Integration Time (Linear)
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Figure 8.2.2: Variation of Zernike Terms vs Integration Time (Log)
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9 Processor Requirements

In order to achieve the 15-second (previously 5-second) LOCS coefficient processing time
requirement (33), ADO2 section 5.3 indicates that a 1GHz-class processor is likely to be
required. The LOCS coefficient processing will be performed on an ESO VME LCU
processor card. Currently only the Motorola MVMES500 offers a 1GHz (Power-PC)
processor and this card is not currently supported by ESO. We propose therefore, rather than
requesting ESO to support the 5500 now, to delay the purchase of the LCU cards until the
LOCS software development is progressed and the true execution time measured on a current
ESO LCU processor. The 15-second processing time will not be required until VISTA
becomes operational on sky. By delaying the purchase of the final LCU cards until nearer
then, we benefit from Moore’s law and provide ESO with a longer timescale to provide
support for the 5500. The 5500 is very competitively priced (~£2K) especially since it is
Motorola’s flagship product. Many of Motorola’s older processor cards are no longer being
manufactured. Obviously the request to provide support for the 5500, if definitely required,
will be made in good time but it is sensible to delay this request until the full processing
requirements are established.
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10 Software

The software associated with the wavefront sensor systems is described in detail in the
following documents. These documents are to be reviewed as an integral part of the WFS
FDR.

Low Order Wavefront Sensors Software VIS-DES-UOD-06048-0001
Design Description (LCU Part) 1.0, 4™ March 2004

Autoguider Software Design Description | VIS-DES-UOD-06048-0003
(LCU Part) 1.0, 4™ March 2004

Image Analysis Algorithms for VISTA VIS-TRE-UOD-06042-0005
Wavefront Sensing 1.0, 12™ November 2003

Table 10.1: WFS Software Documents

The high order wavefront sensor software design description was reviewed as part of the IR
Camera FDR.

High Order Wavefront Sensors Software | VIS-DES-UOD-06048-0002
Design Description 2.0, 4™ March 2004

Table 10.2: High Order Wavefront Sensor Software Design Description

The following document, which recently passed its own FDR, provides an essential overview
of the whole of the VISTA active optics and guiding software. This document should be read
in conjunction with the above four wavefront sensor software documents.

Active Optics and Guiding Workstation VIS-SPE-RAL-13030-0003 2.0,
Software Design Description 3" March 2004

Table 10.3: Active Optics and Guiding Software Design Description
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The following document contains the complete software requirements for the IR Camera and
is the document against which the wavefront sensor documents should be reviewed. Section
2.7 refers to the wavefront sensors.

VISTA IR Camera Software VIS-DES-ATC-06080-0010
Requirements 2.0, 12" November 2003

Table 10.3: IR Camera Software Requirements

The following document is the software functional specification derived from the above
requirements. Section 5.6 refers to the wavefront sensors.

VISTA IR Camera Software Functional VIS-DES-ATC-06081-0001
Specification 2.0, 12" November 2003

Table 10.4: IR Camera Software Functional Specification

The WFS software compliance matrix is tabulated in Appendix 1 section 2.
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11 EMI & Detector Synchronisation

Section 11 of ADI5 describe the electrical design measures that will be implemented to
ensure the lowest probability of interference occurring between the different detector systems
within the IR Camera. RD13 also describes these same measures.

Should interference between the detector systems still prove to be a problem despite the
implementation of the measures outlined above, there is a final fall-back strategy which is to
synchronise the different detector systems such that they cannot interfere (ie. no other
detector system is clocking while another is reading out).

After further discussion with ESO staff at the IR Camera FDR, it is evident that there a a
number of synchronisation techniques that could be implemented if absolutely necessary:

e The technique of interleaving curvature sensor readout between 10Hz autoguider
readouts is possible and could be implemented either through software time
synchronisation (made possible by the use of ESO’s TIM time synchronisation
system) or by providing inhibit/enable signals between the TCCD controllers. Such a
technique would still allow requirement 17 to be met. See AD15 section 11.2.2.

e The curvature sensor and autoguider TCCD controllers could receive inhibit/enable
signals via a fibre-optic link from the science array controller (IRACE) system. See
ADIS5 section 11.2.3.

However, since it is not known at this time that such measures are necessary, there is no gain
to be had in implementing them now. Early EMC testing is planned for the first phase of
Camera AIT so EMI problems will be highlighted as early in the program as possible. If then
required the most appropriate synchronisation technique could be implemented to solve the
problems without impact to the project schedule.

Currently the WFCAM project have encountered no EMI problems between the CCD
autoguider and the four Hawaii IR arrays despite their very close proximity — much closer
than the systems will be in VISTA. This information is indeed encouraging and indicates that
it would be foolish to invest a great deal of effort in producing a solution to a problem that
might not exist.
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12 Declared Materials List

The list of materials to be included within the Camera cryostat as part of the Wavefront
Sensors is presented in Appendix 2. This list will be incorporated into the next release of the

DML for the Camera as a whole [RD12].

13 Conclusion

This document contains the final design of the VISTA IR Camera Wavefront Sensors for the
purposes of the FDR, 31 March 2004. Compliance with the project requirements is
demonstrated. The optical, mechanical, electronic and software design is presented as are the

requirements compliance matrix and the test plan.
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14 Appendix 1: Compliance Matrices

14.1 Overall WFS Compliance Matrix
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14.2 Software Compliance Matrix

Software Requirements from VIS-SPE-ATC-06080-0010 [RD07]

[RD03] VIS-DES-UOD-06048-0001
LOWES Software Design Description
[RD04] VIS-DES-UOD-06048-0002
HOWES Software Design Description
[RD05] VIS-DES-UOD-06048-0003
AG Software Design Description
[RD13] VIS-DES-RAL-13030-0003
Active Optics and Guiding Workstation Software Design Description

14.2.1 Guide Sensor Compliance

ID Software Requirement Compliance | Reference
SWR Software and hardware on which to runit | Ok Reusing VLT
2.7.1.01 shall be provided to: software.
(a) read out the CCD using definable Standard CCS logging
parameters, including frame rate, pixel facilities will provide
rate, area of interest. (c),(d).
(b) measure metrics (value and error) of Standard TCCD
the guide star, including (x,y) centroid, software will meet (a),
integrated flux above background, (b) See section 8 of
FWHM, eccentricity, seeing estimate. [RDO5]

(c) log the guide star metrics.

(d) plot the guide star metrics on a
workstation.

(e) send a guide correction signal to the
telescope control software at a rate of
10 Hz or greater.

SWR The software shall run on the Telescope Ok Section 6 of [RDO05]
2.7.1.02 Control Workstation(s) and Guide Sensor
TCCD detector controller.

SWR The guide sensor may skip a single ‘beat’ Ok Section 3 of [RDO0S5]
2.7.1.04 during readout of a wavefront sensor. This
shall cause the guide signal to remain static
and shall not cause discontinuity. The
guide sensor shall not cause a
discontinuity. The guide sensor shall not
miss more than one beat in any 0.5 second

University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton

Laboratory Astronomy Technology Centre
< CLRC
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interval.
SWR ESO-VLT software shall be used wherever | Ok All of [RDO05]
2.7.1.05 appropriate.
SWR The guide sensor shall be operational TBC Reusing VLT
2.7.1.06 within 1 second of receiving the guide star software.
position, assuming the guide star is within
3 arcseconds of its predicted location.
SWR The guide sensor shall operate Ok
2.7.1.07 concurrently with science observations.
SWR (a) It is a requirement for the IR Camera Ok (a) and (b) can be met
2.7.1.08 software to allow the VISTA telescope by probeServer.
to track a non-sidereal object using Section 4 of [RDO0S5]
open-loop tracking. The Observation software. (c) is not a
Software must provide a non-sidereal requirement.

drift rate to the telescope control
software.

(b) The autoguider software must also
correct the guide signal for any small
drifts in the position of the guide star
caused by atmospheric refraction.

(c) It is a goal for the IR Camera software
to support closed-loop tracking of a
non-sidereal object by allowing the
position of the guide star to move
across the surface of the autoguider
detector. The software should achieve
as high a frame rate as possible, but is
not constrained by the 10 Hz
requirement in this case.

SWR The autoguider software must report an
2.7.1.09 error if the guide star metrics (signal to
noise, image shape, FWHM, etc.) indicate
that the guide star is unsuitable, so the
operator may be given the opportunity to
select a new star.

Section 3 of [RDOS5].
agServer will fail
guiding loop. It’s up to
high level software
[RD13] to decide
what to do next.

SWR The autoguider software must be able to
2.7.1.10 operate with fewer than a full set of
autoguider chips, or with a faulty

High Level Software
responsibility, [RD13]
to turn off auto

autoguider chip. The software shall have guiders.
the ability to disregard data from faulty or
missing chips.
University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre
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14.2.2 Low Order Wavefront Sensor Requirements
ID Software Requirement Compliance | Comments
SWR Software and hardware on which to runit | Ok Reusing VLT
2.7.2.01 shall be provided to: software.
(a) read out the CCDs using definable Standard CCS logging
parameters, including frame rate, pixel facilities will provide
rate, area of interest. (c), (d).
(b) determine the wavefront incident at Standard TCCD
each sensor (defocus, astigmatism, software will meet (a).
coma and trefoil) using appropriate [RDO3] is all about
coefficients, e.g. Zernike or quasi- (b).
Zernike.
(c) log the wavefront coefficients.
(d) plot the wavefront coefficients on a
workstation as a function of time.
(e) transmit the wavefront coefficients to
the telescope control software at a rate
of up to once every 40 seconds.
SWR The software shall run on the Telescope Ok Section 7 of [RDO03].
2.7.2.02 Control Workstation(s) and LOWFS
TCCD detector controller hardware.
SWR VLT software shall be used wherever Ok Reuse of LCU server
2.7.2.03 appropriate. framework. Section 6
of [RDO3].
SWR The LOWES shall operate concurrently TBD EMI Implications
2.7.2.04 with science observations. rather than software
SWR The wavefront coefficients shall be TBC May require faster
2.7.2.05 available to the TCS within 15 seconds of (1GHz) LCU but
completion of each exposure. compliance is
anticipated
It is a goal to make the coefficients
available within 5 seconds.
SWR The start and end of exposure on the two Ok Hardware Issue. Two
2.7.2.06 CCDs of one sensor shall be coincident CCDs are wired
within 1 second. together.
Exposures on the two different sensors
shall be coincident within 3 seconds.
SWR The LOWEFS software must be able to Ok Responsibility of
2.7.2.07 operate with only one operational detector. [RD13]
In this case the software should only
provide the subset of wavefront
coefficients which can be derived
unambiguously with one detector.
RS . Rutherford
@ Siltllvllel:;::u(zlil ]l)l;l;;i}::lnlenmtion Group Appleton UK
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14.2.3 High Order Wavefront Sensor Requirements
ID Software Requirement Comments
SWR Software and hardware on which to runit | Ok DCS (IRACE) satisfies
2.7.3.01 shall be provided to: (a), (b).
(a) read out the high order Wavefront
Sensor data using definable (c) met by [RD04]
parameters.
(b) store the data in the same manner as a (d) and (e) will be
science exposure. implemented also but
(c) analyse the stellar and calibration data they are not described
generating wavefront coefficients (low anywhere.
order Zernike coefficients and high
order mirror mode coefficients) and
transmit these to the TCS.
(d) display the raw data.
(e) display the wavefront.
The system must have the ability trigger
the analysis automatically by the arrival of
new data, i.e. to run the analysis on-line.
SWR The HOWES data will be obtained using Ok OS, ICS, IRACE and
2.7.3.02 the science detector controller hardware, [RD04]
and the HOWFS image analysis software
shall run on the Instrument Workstation.
SWR VLT software shall be used wherever Ok Section 6 of [RD04]
2.7.3.03 appropriate.
SWR The HOWES is not required to operate Ok
2.7.3.05 concurrently with science observations.
SWR The HOWFEFS software must be able to Ok OS, ICS, IRACE
2.7.3.06 cope with broken or missing science determine this.
detectors.
SWR The HOWFS image analysis shall correct | Ok HOWES provides the
2.7.3.07 the wavefront information it generates to option for subtracting
on axis. off axis coefficients.
Null aberrations File
must be provided.
Section 4.2 and 9 of
[RD04]
iversity of Durham Rutherford
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15 Appendix 2: Declared Materials List

WFS Declared Material List

Unit Part Material

LOCS/AG Units  |WFS Housing Arms Aluminium Alloy
CCD Plates Aluminium Alloy
Cover Aluminium Alloy

Retaining Clamps

Aluminium Alloy

Retaining Springs

Beryllium Copper

Fasteners Stainless Steel
Paint Finish Nextel

Pick Off Mirror BK7

Filter Schott RG9
Cube Beamsplitter Fused Silica
CCDs (Custom E2V CCD4240) [Invar 36

Silicon Substrate

Kapton & Copper Flex Circuit

Micro-D Connector

Buffer & Protection PCB
(See Appendix 4 section 5)

PCB (Copper, Epoxy, Glass Laminate)

Micro-D Connectors

Resistors (Surface Mount)

Capacitors Tantalum (Surface Mount)

Capacitors Ceramic (Surface Mount)

Zener Diodes (Surface Mount)

Transient Suppression Packages

2N5564 Dual FET

Solder

Cooling Straps

Braided Copper

Cryostat Harness

Kapton & Copper Flex Circuit

Micro-D Connectors

MIL-C-26482 Hermetic Connectors

HOCS Optics

Fused Silica

Table 1: Wavefront Sensors Declared Materials List

University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre
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16 Appendix 3: Mechanical Drawings (Peter Luke)

The following pages contain the mechanical drawings for the LOCS/AG unit.
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17 Appendix 4: Electrical Schematics and Board Layout (Paul Berry)

The following sections contain the: grounding diagram; harness diagram; board schematics;

board layout and parts list for the LOCS/AG units.
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17.1 Overall EMC Grounding Diagram

IR Camera Cryostat
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Figure 12.1.1: Overall EMC Grounding Diagram for Wavefront Sensors
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17.2 Cable Harnesses
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Figure 12.2.1: Cable harness for Curvature Sensors
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17.3 Board Schematics
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Figure 12.3.1: Schematic showing connectors (1 of 3)
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Figure 12.3.3: Schematic showing buffer configuration of CCD outputs (3 of 3)
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17.5 Parts List
Item | Qty | Reference | Part Name Part Number PCB DECAL Value
1 15 | C8 CI11 | 1206+ RS 367-3415 1206+ 1u
C18 C22
C24 C26
C28-30
C32 C34-
38
2 6 Ql1-6 2N5564 2N5555 TO-71
3 4 J4 J10-11 | 2PINHEADER HDR2
J13
4 15 | C1-7 C9- | CAP1206 RS 264-4179 1206 100n
10 C21
C23 C25
C27 C31
C33
5 2 J8-9 GFPL2PIN Positronic GF2MOODS3LA
GF2MO00ODS3L
6 2 J6-7 GFPL4PIN Positronic GF4MO0DS3LA
GF4MO00DS3L
7 3 J1-3 MDM31SBS MDM31SBS MDM31SBS
8 1 J12 MDM37PBS MDM37PBS MDM37PBS
9 1 J5 MDMS51BSP MDMS51BSP MDMS51BSP
10 15 | RI1-10 RES0805 RS 215-1532 0805 100
R35-39
11 6 R16 R18- | RES0805 RS 215-1942 0805 357
19 R21
R12 R14
12 6 R22 R11 | RES0805 RS 215-3364 0805 7k5
R20 RI13
R17 R15
13 12 | R28-34 RES0805 RS 223-0146 0805 0
R23-27
14 2 Ul-2 SP720 Future SO16MB
Electronics
SP720AB
15 4 u4-7 SP721 Future SO8M1
Electronics
SP721AB
16 54 | TP1-50 TESTVIA TESTVIA
TP53-56
17 12 | D1-2 D4- | ZENER- In6677ur-1 MELF2 30V
5D12-19 | DIODE
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18 Appendix 5: Test Plan

The following sections contain the verification matrix and the individual test requirements for
the WFS system.

18.1 WFS Verification Matrix

WFS Verification Matrix
Applicahle
ltem Document |Section |Description Who Warm / Cold
The CCDs will be tested by the supplier to
0.1]1AD1E 717 |demonstrate compliance with the specification for:
Spectral Response Supplier  |Cald
Full Well Depth Supplier  |Cald
CTE Supplier  |Cold
Fead MNoise Supplier |Cold
Surface Flathess Supplier  [Wvarm
Surface Positioning Supplier  [Wvarm
LOCSAAG
Filter The LOCS/AG filters wil be tested by the supplier to
0.2|Tech Spec dernonstrate compliance with the specification for;
Surface Flatness Supplier  [WYarm
Spectral Response Supplier  [WWarm
Dimensions Supplier [YYarm
LOCS/AG The LOCSIAG cube beamsplitters will be tested by
Beamsplitter the supplier to demaonstrate compliance with the
0.3|Tech Spec specification far:
Surface Flatness Supplier  [YYarm
Farallelizm Supplier  [WYarm
Transmission / Reflectance Supplier  [YYarm
Dimensions Supplier [YYarm
HOCS The HOCS cube beamsplitters will be tested by the
Beamsplitter supplier to demanstrate compliance with the
0.4|Tech Spec specification far:
Surface Flatness Supplier  [YYarm
Spectral Response Supplier  [MYarm
Farallelizm Supplier  [WYarm
Transmission / Reflectance Supplier  [WWarm
Dimensions Supplier [YYarm
11ADDB 5.1.1 LOCS/AG Alignment setting (best focus position]  |Durham |WWarm & Cold
2|AD0G 912 LOCS/AG Internal stability: thermal & flexure Durharn [Wvarm & Cald
3|ADOG 8.2.1 LOCS/AG Autoguider centroid accuracy Durham  [Wvarm & Cald
41AD06 8.22 LOCS Fernike coefiicients determination accuracy  |Durham  [Warm
51ADDB 823 HOCS Zemike accuracy Durham  [Maodel
Table 18.1.1: WFS Verification Matrix
@ University of Durham Rutherford UK
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18.2 Summary and Description of Test Procedures

The following sub-sections summarise the aims of the individual verification and test
procedures.

18.2.1 Verification Procedure 0.1: LOCS/AG CCD Properties

This procedure aims to ensure that the delivered CCDs meet the requirements documented in
the technical specification AD16. AD16 section 7.17 specifies the tests that the supplier must
perform on each device and document in a test report. The procedure is simply a crosscheck
of the test report for each device against the relevant requirement.

18.2.2 Verification Procedure 0.2: LOCS/AG Filter Properties

This procedure aims to ensure that the delivered LOCS/AG filters (Schott RG9) meet the
requirements that will be documented in the technical specification. The specification will
contain requirements for surface flatness, parallelism, short-pass filter coating spectral
response and overall (warm) dimensions. The supplier will be required to provide
documented test data showing compliance with each requirement. The procedure is simply a
crosscheck of the test report for each filter against the relevant requirement. Since surface
flatness and dimension tests are easy to replicate, these will be repeated on delivery.

18.2.3 Verification Procedure 0.3: LOCS/AG Beamsplitter Properties

This procedure aims to ensure that the delivered LOCS/AG cube beamsplitters (fused silica)
meet the requirements that will be documented in the technical specification. The
specification will contain requirements for surface flatness, parallelism, transmission /
reflectance properties and overall (warm) dimensions. The supplier will be required to
provide documented test data showing compliance with each requirement. The procedure is
simply a crosscheck of the test report for each beamsplitter against the relevant requirement.
Since surface flatness and dimension tests are easy to replicate, these will be repeated on
delivery.

18.2.4 Verification Procedure 0.4: HOCS Beamsplitter Properties

This procedure aims to ensure that the delivered HOCS cube beamsplitters (fused silica) meet
the requirements that will be documented in the technical specification. The specification will
contain requirements for surface flatness, spectral response, parallelism, transmission /
reflectance properties and overall (warm) dimensions. Requirements will also be specified for
the three individual elements of the beamsplitter, each of which will need to be tested prior to
cementing. The supplier will be required to provide documented test data showing
compliance with each requirement. The procedure is simply a crosscheck of the test report for
each beamsplitter against the relevant requirement. Since surface flatness and dimension tests
are easy to replicate, these will be repeated on delivery.
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18.2.5 Test Procedure 1: LOCS/AG Alignment Setting (Best Focus Position)

Precision-machining techniques (akin to those used in diamond turning) will be utilised in the
manufacture of the LOCS/AG unit aluminium alloy components to ensure positional
accuracy of the detectors and optical components relative to the mounting reference surfaces.
It is hoped to avoid the need for shimming between components but this remains an option if
required.

The warm dimensions of the individual and assembled manufactured parts will be confirmed
by precision metrology providing confidence that the detectors, when fitted, will be placed in
the correct position. The detectors will be procured with a 20um surface position tolerance
relative to the rear mounting pads but the manufacturer will also be requested to provide
measurement data of this same distance to a resolution of Sum. If the manufacturer is unable
to comply with this request then the detectors will be measured to this accuracy after delivery
with a non-contact surface profileometer. In this way a one-time shimming of the CCDs, if
required, on installation will achieve the required (focus) positional accuracy of £25um. The
detector decentre requirement of +200um is not considered arduous.

The LOCS/AG optical components (pick-off mirror, filter and beamsplitter) will be
positioned against reference surfaces machined into the aluminium alloy mount arms and
held in place by beryllium copper springs. Precision metrology will be sufficient to establish
if the reference surfaces are in the correct warm position. The surfaces will be machined in
two iterations if required to deliver the required positional accuracy.

Once constructed, three alignment mirrors will be adhered to the LOCS/AG unit in positions
where they can be seen from outside the camera cryostat (see figure 6.7.6). These mirrors are
required for subsystem and Camera AIT. The absolute position of these mirrors is not critical.
Their position relative to the mounting reference surfaces will be measured by either
precision metrology or the use of an alignment telescope. These measurements will then be
delivered as a calibration table with each individual LOCS/AG unit.

A warm-to-cold-to-warm alignment test will be conducted with the LOCS/AG unit installed
in a test cryostat and cooled by cold heads. A fast reference beam with precision focus
adjustment will be directed at the LOCS detectors allowing the required change in focus to be
observed as the unit housing contracts with temperature. An alignment scope will be used to
monitor the motion of the unit alignment mirrors relative to the test cryostat allowing any
such motion to be subtracted from the reference beam results. Expected translation of the
reference beam across the detector surface will be measured by CCD readout centroiding.

18.2.6 Test Procedure 2: LOCS/AG Internal Stability (Thermal & Flexure)

As outlined above, the thermal stability of the LOCS/AG units will be confirmed during a
warm-to-cold-to-warm alignment test.
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Flexure of the LOCS/AG units is not considered to be a significant issue given their low mass
(2.25kg, see section 6.10). Flexure will be tested in the warm state. An individual unit will be
mounted in a clean enclosure on a flexure rig and fed by a fast reference beam source, also
mounted on the flexure rig. Displacement of the detectors or the optic components will be
verified by CCD readout centroiding and FWHM measurement.

18.2.7 Test Procedure 3: AG Centroid Accuracy

Autoguider centroid accuracy will be tested by translating a fast precision test beam across
the AG entry aperture. The displacement of the test beam source will be compared to CCD
readout centroiding and the accuracy confirmed. This test will be conducted in the warm and
cold state.

18.2.8 Test Procedure 4: LOWFS Zernike Coefficient Determination Accuracy

This test will be conducted in the warm state since the non-common-path aberrations
introduced by a cryostat window would not be measurable during the course of such a cold
test.

A calibrated aberration test source, based on a 97-actuator continuous phase sheet deformable
mirror, will be used to inject known aberrations into the LOCS unit. The test source will be
independently calibrated and monitored by a phase-shifting interferometer, viewing the
surface of the deformable mirror. Non-common path aberrations detected by the LOCS will
be subtracted as the measurement tests progress. It may be possible to provide additional
verification of the injected aberrations through the use of a separate Shack-Hartmann
wavefront sensor but this strategy will only be adopted if the additional aberrations caused by
the introduction of the additional optics are not detrimental to the accuracy of the test. A
simplified overview of the test set-up is shown in the following figure.
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Figure 1: Simplified Aberration Test Source

18.2.9 Test Procedure 5: HOWFS Zernike Coefficient Determination Accuracy

It will not be possible to conduct a test of the HOCS system, using the same test source as the
LOCS, due to the need to provide a source operating at science wavelengths (J-band) and a
detector system capable of viewing the same. It may be possible to conduct a non-calibrated
test during Camera AIT using the test source already specified for that phase. The
determination accuracy of the HOWFS system therefore needs to rely upon the modelling
work already undertaken and confirmation from the LOCS tests that all is well.

18.3 Verification and Test Procedures

The following sub-sections list the individual verification and test procedures. These
procedure tables will be developed and detailed further in planning the test activities.

Laboratory Astronomy Technology Centre
< CLRC

University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton



/'ﬁ Doc. Number: | VIS-DES-UOD-06042-0001
0 Date: 8™ March 2004
Y Wavefront Sensors
. Issue: 3.0
o — "k Subsystem Design

Page: Page 84 of 84
IR Camera Author: Paul Clark

18.3.1 Verification Test 0.1

Applicable Specification:

IR Camera system : IR Camera

IR Camera sub-system: WES: LOCS & AG

Brief title of test Confirmation of CCD properties
Type of verification Data check

Location of test Durham

Applicable documents VIS-SPE-UOD-06042-0006

Documentation/Test equipment required.
e Manufacturer’s test report

External specialist required.
None

Test procedure or procedure reference

1. Crosscheck manufacturer’s test report against technical specification

Test performed by
Tester Organisation Date of test
Location Applicable test report
University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre
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18.3.2 Verification Test 0.2

Applicable Specification:

IR Camera system : IR Camera

IR Camera sub-system: WES: LOCS & AG

Brief title of test Confirmation of filter properties

Type of verification Data check & Measurement

Location of test Durham

Applicable documents VIS-SPE-UOD-06042-00??

Documentation/Test equipment required.
e Manufacturer’s test report
e Phase-shifting interferometer
e Metrology equipment

External specialist required.
None

Test procedure or procedure reference

1. Crosscheck manufacturer’s test report against technical specification
2. Confirm surface flatness measurement using phase-shifting interferometer
3. Confirm dimensions via precision metrology

Test performed by
Tester Organisation Date of test
Location Applicable test report
University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre
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18.3.3 Verification Test 0.3

Applicable Specification:

IR Camera system : IR Camera

IR Camera sub-system: WES: LOCS & AG

Brief title of test Confirmation of beamsplitter properties

Type of verification Data check & Measurement

Location of test Durham

Applicable documents VIS-SPE-UOD-06042-00??

Documentation/Test equipment required.
e Manufacturer’s test report
e Phase-shifting interferometer
e Metrology equipment

External specialist required.
None

Test procedure or procedure reference

1. Crosscheck manufacturer’s test report against technical specification
2. Confirm surface flatness measurement using phase-shifting interferometer
3. Confirm dimensions via precision metrology

Test performed by
Tester Organisation Date of test
Location Applicable test report
University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre
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18.3.4 Verification Test 0.4
Applicable Specification:
IR Camera system : IR Camera
IR Camera sub-system: WES: HOCS
Brief title of test Confirmation of beamsplitter properties
Type of verification Data check & Measurement
Location of test Durham
Applicable documents VIS-SPE-UOD-06042-00??

Documentation/Test equipment required.
e Manufacturer’s test report
e Phase-shifting interferometer
e Metrology equipment

External specialist required.
None

Test procedure or procedure reference

1. Crosscheck manufacturer’s test report against technical specification
2. Confirm surface flatness measurement using phase-shifting interferometer
3. Confirm dimensions via precision metrology

Test performed by
Tester Organisation Date of test
Location Applicable test report
University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre
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18.3.5 Test Procedure 1
Applicable Specification:
IR Camera system : IR Camera
IR Camera sub-system: WEFS: LOCS/AG
Brief title of test Alignment setting
Type of verification Measurement
Location of test Durham
Applicable documents VIS-SPE-RAL-06040-0001
Documentation/Test equipment required.
e Metrology equipment
e Test cryostat
e Reference beam source

Alignment telescope

External specialist required.
None

Test procedure or procedure reference

1. Measure LOCS/AG aluminium components
2. Re-machine optics reference surfaces if required
3. Manufacture CCD shims if required
4. Adhere alignment mirrors to unit housing
5. Measure mirror position relative to mounting reference surfaces. Document.
6. Conduct warm-cold-warm alignment test using reference beam and alignment
telescope outside cryostat. Document.
Test performed by
Tester Organisation Date of test
Location Applicable test report
University of Durham le;heliford UK
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18.3.6 Test Procedure 2

Applicable Specification:

IR Camera system : IR Camera

IR Camera sub-system: WEFS: LOCS/AG

Brief title of test Internal stability

Type of verification Measurement

Location of test Durham

Applicable documents VIS-SPE-RAL-06040-0001

Documentation/Test equipment required.
e Flexure rig
e Reference beam source
e C(Clean enclosure for LOCS/AG unit

External specialist required.
None

Test procedure or procedure reference

1. Test flexure by reading out CCD centroid position at various attitudes.

Document.
Test performed by
Tester Organisation Date of test
Location Applicable test report
University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre
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18.3.7 Test Procedure 3

Applicable Specification:

IR Camera system : IR Camera

IR Camera sub-system: WEFS: LOCS/AG

Brief title of test AG Centroid accuracy

Type of verification Measurement

Location of test Durham

Applicable documents VIS-SPE-RAL-06040-0001

Documentation/Test equipment required.
e Precision fast reference beam source
e Test cryostat

External specialist required.
None

Test procedure or procedure reference

1. Confirm centroid accuracy by translating reference beam across sensor.
Observe CCD centroid position. Document.
2. Repeat in test cryostat. Document.

Test performed by
Tester Organisation Date of test
Location Applicable test report
University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre
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18.3.8 Test Procedure 4

Applicable Specification:

IR Camera system : IR Camera

IR Camera sub-system: WEFS: LOCS/AG

Brief title of test LOCS Aberration measurement accuracy

Type of verification Measurement

Location of test Durham

Applicable documents VIS-SPE-RAL-06040-0001

Documentation/Test equipment required.
e C(Calibrated aberration test source
e Phase-shifting interferometer

External specialist required.
None

Test procedure or procedure reference

1. Confirm aberration measurement accuracy using calibrated test source.

Document.
Test performed by
Tester Organisation Date of test
Location Applicable test report
University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre
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18.3.9 Test Procedure 5

Applicable Specification:

IR Camera system : IR Camera

IR Camera sub-system: WES: HOCS

Brief title of test HOCS Aberration measurement accuracy

Type of verification Measurement

Location of test RAL

Applicable documents VIS-SPE-RAL-06040-0001

Documentation/Test equipment required.
e AIT test source
e IR Camera AIT Procedures

External specialist required.
None

Test procedure or procedure reference

1. Perform non-calibrated measurement during Camera AIT campaign to validate
model results. Document.

Test performed by
Tester Organisation Date of test
Location Applicable test report
University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre
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19 Appendix 6: LOCS/AG Optical Design Report (Richard Bingham)

Note: This report was written prior to the decision to rotate the autoguider CCD through 90°.

Proposed optical design of the Low-Order Curvature Sensor
(LOCS) and the Autoguider for VISTA

Version 1

Richard G. Bingham
11 November 2003

This is part of an optical design project related to the VISTA wavefront sensors.

I investigated different layouts for the LOCS. One solution (not that preferred) compensated
successfully for the astigmatism and coma induced by a tilted plate beamsplitter by using
correctly angled flat surfaces. However, it was clearly more complicated than the preferred
solution, with compound angles on the assembly and also having extra optical components,
with no apparent advantage. The use of a cube-type beamsplitter is preferred as it gives the
best solution in terms of simplicity as well as in terms of performance.

The proposed solution is modelled in the Zemax file Tel+Cubel3b.zmx. This Zemax file
contains the telescope as well as the beamsplitter optics so that the ray-trace precisely models
the real system, with the sensor optics in the required position off-axis.

The CCDs are both shown in focus in Tel+Cubel3b.zmx so that Zemax demonstrates the
available performance. In practice, the two CCDs are to be adjusted to +/- 1 mm defocus.

The system is to be duplicated in the telescope. In each of the two sensor assemblies, this
proposed design uses a single cube-type beamsplitter covering both the LOCS and
Autoguider fields. In the case of the Autoguider, the fact that the relevant rays pass through
the prism serves to throw the image about 15 mm further out than it would be in vacuum,
which may be convenient, and the LOCS and Autoguider CCDs are coplanar. Thus part of
the prism has a beamsplitter coating on the hypotenuse face, serving the two LOCS detectors.
The Autoguider part of the prism has two simple options — either leave the prism clear, or
apply a mirror coating on the hypotenuse face. This gives rise to alternative positions for the
Autoguider detector, the choice to be made by Durham.

University of Durham Rutherford UK
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30 LAYOUT

FRONT-SURFACE MIRROR AND CUBE-TYPE BEAMSPLITTER RGB
TUE NOV 11 2003 —
SCALE: 2.0000 10.0@ MILLIMETERS

TEL+CUBE13B.ZMX

CONFIGURATION: ALL 2

Figure 1

The geometry of the beamsplitter is illustrated above and below (Figures 1 and 2). The two
focal planes are shown in the nominally focused position as noted above. The nearest corner
of the beamsplitter block can be removed as indicated, if it is necessary to make more space.
This prism as shown uses fused silica; if any other material is used as discussed elsewhere,
the position of the focal plane needs to be recomputed and is slightly further from the block.
(Other dimensions are unchanged.)

Figure 2
University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory Astronomy Technology Centre

CLRC



/'ﬁ Doc. Number: | VIS-DES-UOD-06042-0001
0 Date: 8™ March 2004
B Y Wavefront Sensors
Subsystem Design e >0
IR Camera Author: Paul Clark
08T

| ~ 12 A\E

-@.0653, -0.6684 DEG
w

e
mp

i A S
| |
N R § %

)

VS
4

~)
N

)

L=

OPTICAL PATH DIFFERENCE

FRONT-SURFACE MIRROR AND CUBE BEAMSPLITTER
MON NOV 10 2003
MAXIMUM SCALE: + 2.000 WAVES.

©0.750 ©.850

SURFACE:

RGB

TEL+CUBE13A. ZMX
CONFIGURATION 2 OF 2

IMAGE
Figure 3
__OBT: 0.0000, -0.7229 DEG _
W W
], =
PY — E—

OPTICAL PATH DIFFERENCE

VISTA WFS DEVELOPMENT

TUE_NOV 11 2003

MAXIMUM SCALE: t 2.000 WAVES.
0.750 0.850

SURFACE: IMAGE (DETECTOR)

RGB

SKY_FIELDSZ2
CONFIGURATION 2 OF 1@

. ZMX

Figure 4
University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre



/'ﬁ Doc. Number: | VIS-DES-UOD-06042-0001
0 Date: 8™ March 2004
Y Wavefront Sensors
. Issue: 3.0
o — "k Subsystem Design

Page: Page 96 of 96
IR Camera Author: Paul Clark

Figure 3 shows the aberrations (optical path difference) appearing through the silica
beamsplitter for nine field positions, being first the centre, then the corners of the LOCS field
and then the corners of the Autoguider field. This may also be seen from the Zemax file.
The scale is +/- 2 waves. Figure 4 shows aberrations appearing through VISTA without the
beamsplitter, at the centre of the LOCS field, on the same scale. {Note: Further detail on the
LOCS aberrations is given in Appendix 14.}
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APERTURE FULL X WIDTH : 58.0000
APERTURE FULL Y HEIGHT: 30.0000 4 RAYS THROUGH = 78.83x
FOOTPRINT DIAGRAM
FRONT-SURFACE MIRROR AND CUBE-TYPE BERMSPLITTER RGB
TUE NOV 11 2003
SURFACE 55: FOCAL SURFACES
RAY X MIN = -27.265@ RAY X MAX = 27,2637
RAY Y MIN = -13.8483 RAY Y MAX = 13.8520 |TEL+CUBE13B,ZMX
MAX RADIUS=  30.5721 WAVELENGTH= ALL CONFIGURATION 1| OF 2
Figure 5

The field of view available at either exit from the beamsplitter is illustrated above in Figure 5.
As noted, one exit will be chosen for the Autoguider field. This will be either straight
through the prism or in reflection, depending on whether a mirror coating is applied on the
relevant part of the beamsplitter hypotenuse face. {Note: the autoguider field has
subsequently been rotated through 90°. The CCD is mounted above the cube using the
reflected optical path.}
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Figure 6

The above Figure 6 and Figures 7 and 8 below indicate details of the beamsplitter block with
tolerances.

University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton

Laboratory Astronomy Technology Centre
< CLRC



/'ﬁ Doc. Number: | VIS-DES-UOD-06042-0001
0 Date: 8™ March 2004
Y Wavefront Sensors
. Issue: 3.0
o — "k Subsystem Design

Page: Page 98 of 98
IR Camera Author: Paul Clark

Geometry for cutting the beamsplitter prism with tested transmission directions

Blank .
/\ CUT PRISMS Optical faces
:g : . \\\ \\\ |
Qs I \\\ \\\ \\ N : 44 + 1 _ 0
}7; | N \ o
B | \\ \\\ \\\ :
— ) I N \\ AN N |
8 : N ( \\\ \\ I
:__; \\ N \\ I
8 S Ends and ba
fine grey, stained 44+1-0
black Angles +/- 0.1 d
tical st of - ngles +/- 0.1 degree
Qp ica’ tod] O cuboid > Optical figure - see below
FIGURE 7 FIGURE 8
Cutting Finished. Sizes in mm

1. Procure or produce a blank giving less than 0.5 wave OPD error in visible light peak
to valley in transmission in single pass in ~ 50 mm thickness over ~ 50 mm x 80 mm.
Optical tests of the blank need to be performed in two orthogonal directions, as
indicated in Figure 7. The dashed lines in Figure 7 show the preferred plane of
striations (if any) in the material. (The material supplier will understand this.)

2. Mark out a square prism in relation to the optical test directions, as shown in Figure 7,

but allowing for two mm surplus material all over the optical faces, including 2 mm

on each mating hypotenuse face.

Cut final ends to length.

4. Saw the two 45-degree triangular prisms. Reduce all the optical faces to size by

removing approximately 2 mm glass with loose abrasive on each surface. Do not

mill.

Polish the optical faces.

6. Figure the outer faces flat to 0.5 visible fringe p-v in reflection. Figure the
hypotenuse face flat to 0.2 visible fringe p-v in reflection. Flatness tolerances apply
to the reflected wavefront (not to the surface height) and are with respect to absolute
flatness, the curvature tolerance being zero. All to 2 mm from edges. Generate
chamfers approximately 1 mm x 45 degrees.

[98)
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MAX RAOIUS= 45,3026 WAVELENGTH= ALL CONFIGCURATION: ALL 2

Figure 9

Figure 9 shows the mirror surface 88 x 72.5 mm with illumination patches for the field
positions previously discussed. The mirror should be figured to 0.2 visible fringe p-v in the
reflected wavefront overall with respect to absolute flatness, and if possible this quality
should be maintained to 1.5 mm from the long edges, including any chamfer up to 0.5 mm.
To achieve this on a stiff component, the mirror should be produced as the hypotenuse face of
a triangular block.
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The filter (Figure 10) is modelled as 74 x 44 x 3 mm. Figure each side flat to 0.5 visible
fringes p-v in the reflected wavefront. Filter type to be specified by Durham. The LOCS and
Autoguider areas are just separated (by 0.25 mm) at this point.

.00B® MILLIMETERS

SCALE: 5@
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Figure 10
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20 Appendix 7: Alternative Non-Cemented LOCS Design (R Bingham)
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beamsplitter and appears easier to produce.

This solution aims to correct the astigmatism and coma in a beamsplitter of significant
thickness. To do this it uses a back-surface mirror and a front corrector (shown green)
that is wedged at a compound angle. This solution works in aberration terms but was
not recommended, owing to the existence of the cube-beamsplitter solution; the cube
solution avoids stray reflections from the close parallel surfaces of the mirror and

Note. The plates of the beamsplitter shown above need not be cemented. The
alternative is to use AR and beamsplitter coatings designed for 45 degrees incidence in
vacuum, with thin shims (say 10 um) providing a gap. Assemble in the optics factory.
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21 Appendix 8: HOCS Optical Design Report (Richard Bingham)

Proposed optical designs for the High-Order Curvature Sensor
(HOCS) for VISTA
Optical Design and Analysis - Report
Richard G. Bingham
28 January 2004

21.1 Introduction and Summary

This is part of an optical design project for the VISTA wavefront sensors. The High Order
Curvature Sensor is a passive optical device feeding one of the VISTA science detectors. It
uses beamsplitters providing a pair of stellar images on the same detector surface at different
positions of focus. Alternative layouts are based on:

Type A: A suggestion by Martin Caldwell, document VIS-TRE-UOD-06042-0004, page 13,
22 May 2003.

Types B and C: A suggestion by Richard Bingham dated 11 November 2003 (email to Paul
Clark).

The sensor is required to operate at J and Ks wavebands. The following wavelengths are
used here.

Band Wavelength (microns)

50 % point Centre 50 % point
J 1.16 1.25 1.34
K, 1.99 2.15 2.31

The designed defocus distances are: 1.0, 1.5 and 2.1 mm. Type A provides images at these
distances as + or -, one lying each side of focus. Types B and C provide one image at the
stated defocus and one image in-focus. These designed defocus distances are changed by
altering the thicknesses of the optical components. Type A will be seen to provide the best
function. Type B is a lower-cost option as regards optical manufacturing. Type C is a
similar low-cost option that is included for completeness, but it requires a wide dynamic
range of measured intensity and would need further study.

{Note: Types B & C would potentially allow the HOWFS to be implemented as a Phase
Diversity sensor, rather than a Curvature Sensor. They are included here for completeness
but only Type A is currently being considered for inclusion within the IR Camera. Phase

Rutherford

Appleton UK

University of Durham
Astronomical Instrumentation Group
Laboratory cLRC Astronomy Technology Centre



/'ﬁ Doc. Number: | VIS-DES-UOD-06042-0001
0 Date: 8™ March 2004
Y Wavefront Sensors
. Issue: 3.0
o — "k Subsystem Design

Page: Page 103 of 103
IR Camera Author: Paul Clark

diversity has previously been used by the NAOS-CONICA development team to analyse
aberrations within the instrument.}

It may be noted that in any of these arrangements, with an even number of reflections in both
the light paths, each out-of-focus image will have the same parity as the other in relation to
the main optics. Where an image passes through the focus, it is effectively rotated 180
degrees without reversal of parity.

All optical studies included the complete optical system of the telescope, but not seeing. This
report also includes reasonably comprehensive consideration of stray and scattered light.
Geometrical ray tracing is used in the main, but a trial with coherent imaging is also shown.
The two operating wavebands, two layout options and three defocus distances give rise to
twelve possible designs. There are also options for the beamsplitter’s splitting fractions.

In principle, any of these devices may be moved either laterally or in the focus (axial)
direction.

21.2 Materials

In common with the LOCS, these devices are formed with cemented prism elements that
must resist cooling. This technology is possibly subject to further discussion and experiment,
but the most likely material to be selected is Heraeus Infrasil and that is adopted here. A
change of material would not be excessively complicated to introduce in this design phase,
but there would be small changes to the thicknesses of the optical elements.

21.3 Beamsplitter coatings

Transmission, reflection and absorption coefficients are stated for various coatings used in
this design exercise, and it is indicated how the choice of these coefficients affects the results.
For procurement, the beamsplitter coatings should be specified in terms of desired
coefficients.

21.4 Optical Diagrams for Type A, on axis

The six Figures la to 1f show Type A devices for the two wavebands and three defocus
distances. Actual dimensions are tabulated later. The beamsplitter blocks are cuboids with
square end faces. Ray tracing and diagrams relate to the whole optical system including the
lenses of the infrared camera, but for clarity, only the beamsplitter section is reproduced. It
may be seen that the model includes multiple reflections. Figures la to 1f do not show that
some rays correspond to greatly reduced intensities (this is quantified later).

To model both the required rays and the stray light, the end surfaces of the prism block are
assigned nominal A/4 anti-reflection coatings. The side faces are modelled with a purely
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nominal black surface, absorbing 95 per cent. Of the five per cent reflected light from these
side faces, 30 per cent is specular and 70 per cent is scattered according to the Lambertian
rule. The whole VISTA optical system is included here (although out of the diagram) and
again the lens faces of the IR camera are assigned nominal A/4 anti-reflection coatings. In
practice, stray reflections from the lens faces, and scattered light, contribute negligible
brightness in Types A and B.

A single angle, 25 degrees, is used for the tilted slab in all these cases. Other angles were
investigated, but no advantage was found. In any case, using a variety of angles within the
range of devices would complicate production. The chosen value is not critical but there are
general considerations. Angles much less than 25 degrees give less satisfactory clearance
between the images and the unwanted, subsidiary reflections that ray tracing discloses.
Angles much larger than 25 degrees give a rather thin edge on the outer elements (as the
length of the cuboid is fixed for a given defocus), making manufacturing unnecessarily
critical. 25 degrees is also, incidentally, about the largest angle that can be used on some
beamsplitters without introducing significant polarisation, although low polarisation was not
specified in this project.

The devices are inserted in substitution for the colour filters, and provide the calculated
defocus on the standard science focal plane array, having removed the known filter
thicknesses. The devices themselves require the application of colour filters on the entrance
face.
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Figure la. HOCS type A, J band, with +/- 2.1 mm defocus. For other dimensions, see table. The
front surface of each HOCS device shown in this paper is 33.4 mm ahead of focus.
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Figure 1b. HOCS type A, J band, with +/- 1.5 mm defocus
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Figure 1c. HOCS type A, J band, with +/- 1.0 mm defocus
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Figure 1d. HOCS type A, Ks band, with +/- 2.1 mm defocus. For

other dimensions, see table.

Figure le. HOCS type A, Ks band, with +/- 1.5 mm defocus
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Figure 1f. HOCS type A, Ks band, with +/- 1.0 mm defocus
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21.4.1 Dimensions and tolerances for Type A

The fabricated cuboid blocks for the six sub-type devices of Type A have the same sized
entrance and exit faces (17 mm square) and the same angles for the immersed beamsplitter
slab. However, the six devices have significantly different overall lengths. The immersed
beamsplitters require only slightly differing thicknesses for J and Ks, so that an average can
be used and only three different thicknesses are required in that case.

Figure 2 shows the construction of a device and the symbols used in Table I for the

dimensions.

Dimension D is that used for ray tracing, whereas dimension C is required for production.

C =D X cosine (25 degrees).

<

>

A

Figure 2. Diagram and illustration showing the construction of the
device and the symbols used here for its dimensions.
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Table 1
HOCS beamsplitter
Type A
Dimensions in mm
J Ks Mean J & Ks

+/- 2.1 mm defocus Overall cube length B 16.60 | 17.20

Tilted splitter, axial D 3.72 3.68 3.70

Normal to splitter C 3.35

Immersion depth E 6.50 6.50

Min. exit aperture diameter 12 12
+/- 1.5 mm defocus Overall cube 14.68 | 15.23

Tilted splitter, axial D 2.65 2.63 2.64

Normal to splitter C 2.39

Immersion depth E 6.00 6.00

Min. exit aperture diameter 11 11
+/- 1.0 mm defocus Overall cube 13.07 | 13.60

Tilted splitter, axial D 1.77 1.75 1.76

Normal to splitter C 1.60

Immersion depth E 5.80 5.80

Min. exit aperture diameter 10 10

Material — Heraeus Infrasil

Entrance and exit faces are 17.0 mm square (dimension A).

The beam size on the entrance face of the HOCS on-axis is 10.6 mm diameter.

Dimensions D are axial segments as used in ZEMAX. The thickness of the splitter normal C
to the beamsplitter surfaces is obtained by multiplying these figures by cosine 25 degrees.

All the HOCS devices in this document are shown with a front surface that is 33.4 mm ahead
of the focal plane, but if so required, they can be moved towards the focal plane.

Table 2
Dimensional tolerances mm
A +/- 0.1
B +/-0.03
C +/- 0.01
D Not a specified dimension
E +/- 0.20
Angles +/- 1 arc min
Mount square +/- 0.1 mm across A

Clear apertures of polished faces are up to 2 mm smaller all round than the overall size.
Within this, chamfer 0.5 mm x 45 degrees. Thus the polished clear apertures of the entrance
and exit faces should be >13 mm square. For an on-axis device, if required, the entrance face
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can be limited to 12 mm diameter and the exit face to the diameters shown in Table L
However, limiting these apertures to circles may slightly reduce the ability to find stars
subject to small pointing errors and is not recommended for devices used off-axis, as a
special study might be required for placing the device accurately.

Polish the square ends to +/- 0.3 visible fringe p-v. Apply colour filter coatings and anti-

reflection coatings for relevant wavelength ranges.

Polish the diagonal faces on all three parts to 0.1 visible fringe p-v. Beamsplitter coatings on

front face of immersed part and front face of following part.

Side faces to be fine grey, true to shape to +/- 0.1 mm. Finish sides black.

21.4.2 Sample Images

Figure 3. The image yielded by this system with a 14:70:16
beamsplitter (see text). See Figure 4 for the colour scale.

Figure 3 shows a typical intensity distribution on the focal surface, including some scattered
light and multiple reflections, which fortunately, are low in brightness. Figure 4 is the same
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plot on a small scale, showing subsidiary reflections and including the logarithmic scale of
relative intensities.

The two major images have comparable relative intensities due to assumptions adopted for
the beamsplitter, defining the reflection and transmission coefficients. In this case,
transmission is 14%, reflection 70%, and absorption 16% (14:70:16).

1. BEE+Q@@]
1. BEE+33AR
1. BRE-Q@]
1. 0dE-a@z
1. @dE-@&z
1.@EE-3=ay
OETECTOE TMAGE: THWCOHEREWT TEEAOTHMCE

VISTA JRCAW HICS T +- 2.1 WH FICUE

HED TAN ZE Z@d4

DETECTOR L2, NECE ELRFACE 3@ DETECTOR

SLEE Zd.4ER W ¥ 30,4930 H NILLTMETERS, FTAELS LE:2Y W X LE=2Y H, TOTAL HITS = 27934

PERE IRRADIAMCE @ 5.0ZZ1E+BBD WATISALHZ

TOTAL POWEE i 1. 26Q4E-PPI WATTI

Figure 4. As Figure 3, with intensity scale. The image is obtained with a
14:70:16 beamsplitter.

Figure 5 shows the illumination provided by a “50-50” beamsplitter (see caption). The
colour key is the same as in Figure 4. The image sampling is illustrated in more detail in
Figure 6, where the illustration resolves the 20-micron pixels.
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Figure 5. This image is obtained with +/- 2.1 mm defocus in J and a 41:39:20 beamsplitter. The
colour key for log(relative irradiance) is the same as in Figure 4. (A larger number of rays is used
for these images, giving a more realistic appearance to the size of the central shadows than appears
in the ray diagrams.)

Figure 6. A typical polychromatic image 2.1 mm past focus in J (incoherent summation
in this case). This illustrates the sampling with 20-micron pixels. The optics of the
telescope are fully modelled, without the atmosphere.
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21.4.3 A Trial Aberration in the Telescope

In Figures 7 to 9, a possible application of the sensor has been tested by means of setting up a
trial aberration in the telescope, such as might occur in practice. For this exercise, the conic
constant of the primary mirror has been changed by +0.0003, giving an increment of about
1.6 microns of spherical aberration in reflection. Figure 7 first shows images obtained from
the nominal, unmodified telescope at +/1.0 mm focus shift. Figures 8 and 9 show how the
sensor responds to the trial aberration, which may also be seen as a plot of the wavefront
profile by comparing Figures 10 and 11. The images have not been re-analysed but appear
satisfactory.

Figure 7. Monochromatic 1.25 nm, coherent (9 microns coherence length), nominal
telescope, +/- 1 mm defocus (no seeing)

Figure 8 shows the effect obtained when the aberration is present.

Figure 8. Monochromatic 1.25 nm, coherent, aberrated primary mirror
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Figure 9 With the three J wavelengths, separately coherent, aberrated primary mirror
(In this exercise, the separation of the two images on the detector is slightly larger than in the
final design of the sensor.)
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Figure 10. A diagram of wavefront aberration in the nominal telescope. Scale +/- 2 waves
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Figure 11. A diagram of wavefront aberration in the notionally perturbed telescope on
the same scale.
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21.4.4 Aberrations in the beamsplitters

0BT: ©.0000. ©.0000 DEG _ Figure 12. OPD aberrations

W I Wl with the standard 10 mm filter

N 1 and no HOCS. Scale +/- one
1 1 wavelength.
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Figure 13. Transverse ray 0BT: ©.0000, ©.0082 DEG
aberrations with the standard EY EX
10 mm filter and no HOCS.
Scale +/- 50 microns.
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Figures 12 and 13 above show the aberrations of VISTA re-focused for the best image on-
axis in the J band with the standard 10 mm filter thickness, scale +/- 1 wave.

Figures 14 and 15 below show the aberrations of VISTA refocused again on-axis in the J
band with 25 mm additional optical path in the prism block. The additional aberration is
proportional to this thickness, the value of 25 mm being used here as a reference. It may be
seen that aberrations are not much affected by the insertion of the HOCS elements, which
have up to only 16.6 mm thickness.
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OBT: ©.0000, ©.0000 DEG Figure 14. OPD aberrations
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21.4.5 The Curvature Sensor placed Off-Axis

There is a requirement to use the High Order Curvature Sensor up to 137.2 mm off-axis.
This requirement has been investigated by moving a device and a star image off-axis in the
ray trace. Figure 16 shows the ray diagram. It may be seen that the off-axis effect is quite
large. With a fairly fast optical system such as this, pupil aberrations are present and may be
more apparent off-axis. The effect is that rays having passed through the lens system no
longer appear to originate from a uniform circular aperture on-axis with a symmetrical central
obscuration. Whilst the effect can be analysed, it may raise a degree of complexity for the
curvature sensor.

In Figure 17, the corresponding image intensity is analysed for this off-axis position. Large
distortions of the apparent pupil may be seen. These out-of-focus images are not in planes
where the pupil is imaged, but they are nevertheless affected by pupil aberrations. This effect
will require special consideration in the reduction algorithms.

{Note: The Simplex-based curvature sensing aberration measurement algorithm includes a
model of the telescope and camera. The extra focal images are produced by ray tracing and
take into consideration the off-axis position of the central obscuration. As described in AD(02
section 4, the accuracy of the technique has been validated by comparing the ray-traced
extra-focal images against those produced by Fresnel-propagation image generation.
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Figure 16. The diagram shows the HOCS type A with +/- 2.1 mm defocus in the J waveband. This
ray diagram is obtained with the device placed 136 mm off-axis for a field point at 137.2 mm.

Figure 17. The intensity plot for an off-axis star as in Figure 16
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21.5 Curvature Sensor Type B
16.65 mm
< >
1.53 mm
_> 4—

%‘ 
=
I
 /

Figurel8. An example of the Type B system with zero and m defocus

Figurel9. Formation of inner and outer images in Layout 2

Figures 18 and 19 show devices of type B. An outer image is defocused to the right, beyond
the detector. The defocus distance (2.1 mm in this case) is provided by the total thickness of
glass, and an inner image is brought back into focus by the two reflections at the beamsplitter
part. The inner image appears in the central shadow in the main image, as shown in the
enlarged diagram in Figure 19. In this case, the beamsplitter is not tilted to obtain a separate
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image and also, need not be immersed. If it is satisfactory as a curvature sensor, this
arrangement may have a considerably lower cost. A decision on this choice will involve the
algorithm for using this type of sensor (with one image in focus), and will involve the effect

of seeing.

In Type B, it is possible to reduce the relative brightness of the in-focus image by giving the
beamsplitter surfaces high transmission and low reflectivity. Clearly, the in-focus image
should not be fainter than the diffuse image. Figure 20 shows images computed through the
whole VISTA system for beamsplitter surfaces of 4:1 transmission to reflection ratio and a
defocus of 2.1 mm for the outer image. The relatively low reflectivity has also served to

suppress multiple reflections within the beamsplitter section.

Figure 20. Concentric images in Type B. The colour scale is the same as before. No seeing.
This analysis includes the use of 20 micron pixels that are resolved in the figure.

Figure 21. Further illustration of the device type B.
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21.6 Curvature Sensor Type C

There exists an alternative arrangement to type B in which the direct image is in focus and
the defocused image is pulled forward by the beamsplitter. The defocused image in that case
is beyond focus rather than short of focus. This is shown in Figure 22.

»

Halo regions

e

Figure 22. Type C. A normal image in focus, plus an image pulled back
2.1 mm by double reflection on the immersed beamsplitter layers.
Diameter 20 mm, clear aperture 16 mm. The outer rays illustrate an
additional double reflection (see text).

Type C is problematical owing to the dynamic range of intensity. In this Type C, the focused
image cannot be kept down in surface brightness, owing to the two fewer reflections that it
sees. High reflectivities may help (albeit with a loss of transmission), but cannot brighten the
diffuse image to balance the smaller size of the focused image. Also, multiple reflections
within the beamsplitter layer would be enhanced by high reflectivity and give rise to an outer
halo as shown in Figure 22. It is possible that such halo regions can be kept outside the main
image, but for these reasons, further investigation would be needed before Type C could be
implemented.
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21.7 Dimensions of devices types B and C
HOCS beamsplitter
Type B
Dimensions in mm
J Ks
+2.1 & 0 mm defocus Overall thickness G 16.60 | 17.21
Splitter part, axial H 1.53 1.51
+1.5 & 0 mm defocus Overall thickness G 14.67 | 15.24
Splitter part, axial H 1.09 1.08
+1.0 & 0 mm defocus Overall thickness G 13.07 | 13.60
Splitter part, axial H 0.73 0.72
HOCS beamsplitter
Type C
Dimensions in mm
J Ks
-2.1 & 0 mm defocus Overall thickness G 9.87 10.32
Splitter part, axial H 1.53 1.51
-1.5 & 0 mm defocus Overall thickness G 9.87 10.32
Splitter part, axial H 1.09 1.08
- 1.0 & 0 mm defocus Overall thickness G 9.87 10.32
Splitter part, axial H 0.73 0.72
G 1s the rotal thickness and is toleranced.
Tolerances are the same as for Type B.
Average thicknesses for the splitter part can be used (for J and Ks).
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22 Appendix 9: Stray Light Analysis (Marc Ferlet)

Ghost analysis IRCAM / WFS

Marc Ferlet, RAL/SSTD-OSG (20/02/2004)

22.1 Introduction

This note summarises the evaluation of the ghost images formed on the IRCAM FPA
from bright objects in the WFS FoV. These are expected to arise from non-absorbed
multiple reflections within the refractive filtering element of the WFS system located
just after the pick-off mirror (POM). Section 2 below attempts to quantify the
equivalent brightness of possible ghosts from the knowledge of the WFS component
characteristics while the optical model runs are described in section 3. Conclusions
are drawn in section 4.

22.2 Model for ghost equivalent brightness

Following the same approach as in RD1, the approximate equivalent magnitude of
the ghost eventually generated at the IRCAM focal plane can be estimated via:

A ttghost

m,,. =M, —2.5log(—*=) with Sgnost being the size of the ghost image extent at

ghost star

ghost

the IRCAM focal plane (converted in arsec? via the plate scale) and Attgnost being the
attenuation of the point source illumination generating the ghost image after
interaction. From the properties of the WFS present design (RG9 glass substrate),
one can then estimate the relative attenuation for a beam out-of-WFS band but in
IRCAM science band, being reflected by the interference filter on the back surface
(beamsplitter side). The table below summarises this with the following assumption:
attenuation at the POM is based on transmission (~98%) at the front AR coating,
double pass after reflection (~98%) on the interference filter coating. Attenuation at
FPA is the same with an added 1.5% reflection on any camera lens.
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Bulk transmission Bulk transmission

(for 3mm thick for RG9 (double Imaginary part of Ghost relative Ghost relative
Lambda (nm) RG9) pass) the refractive index attenuation WFS POM attenuation at FPA
690 0.00% 2.11E-04
700 0.30% 1.08E-04
710 8.00% 4.76E-05
720 32.00% 2.18E-05
730 61.00% 9.57E-06
740 80.00% 4.38E-06
750 90.00% 2.10E-06
760 94.00% 1.25E-06
770 95.00% 1.05E-06
780 96.00% 8.45E-07
790 96.00% 8.55E-07
800 96.00% 8.66E-07
850 94.00% 1.40E-06
900 89.00% 79.21% 2.78E-06 1.52% 0.023%
950 80.00% 64.00% 5.62E-06 1.23% 0.018%
1000 65.00% 42.25% 1.14E-05 0.81% 0.012%
1060 36.00% 12.96% 2.87E-05 0.25% 0.004%
1100 17.00% 2.89% 5.17E-05 0.06% 0.001%
1200 0.70% 1.58E-04
1300 0.60% 1.76E-04
1400 0.08% 2.65E-04
1500 0.03% 3.23E-04
1600 0.09% 2.98E-04
1700 0.09% 3.16E-04
1800 0.10% 3.30E-04
1900 0.90% 2.37E-04
2000 4.00% 1.71E-04
2100 8.00% 1.41E-04
2200 15.00% 2.25% 1.11E-04 0.04% 0.001%
2300 23.00% 5.29% 8.97E-05 0.10% 0.002%
2400 30.00% 9.00% 7.66E-05 0.17% 0.003%
2500 33.00% 10.89% 7.35E-05 0.21% 0.003%
2600 33.00% 10.89% 7.65E-05 0.21% 0.003%
2700 32.00% 10.24% 8.16E-05 0.20% 0.003%
2800 7.00% 1.98E-04
2900 5.00% 2.30E-04
3000 4.00% 2.56E-04

Table 1: RG9 spectral transmission properties. The limit at ~2.5um stands as the
approximate science detector cut-off. The spectral regions where the RG9 double
pass transmission is >1% are highlighted.

For a series of star (point source) integrated magnitudes in the worst-case science
band (0.9um-1.0um i.e. in the Zsloan & Y bands) and for different possible ghost
image diameter, one can estimate the ghost image equivalent magnitude (in
mag/arsecz) for comparison with the sky background; taking into account the
reflected double pass and the front reflection.

Ghost image diameter at FPA
Mstar 50 arcsec 75 arcsec 100 arcsec

4 ~20.2 ~21 ~21.8

5 ~21.2 ~22 ~22.8

6 ~22.2 ~23 ~23.8

7 ~23.2 ~24 ~24.8
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The straylight specifications for the IRCAM ghosting requires diameter <75arcsec for
a magnitude M=6 star. Assuming the sky background in the worst-case science band
to be ~18.5mag/arcsec? (TBC), it would be desirable to induce, from the WFS path,
an eventual ghost no brighter than ~1% of the sky background i.e. of magnitude
~23.5mag/arsecz, highlighted in the table above. The consequence is that the larger
the induced ghost image is, the brighter the point source can be allow in the WFS
FoV, with the typical example values given above.

Table 1 shows that at the long wavelength edge of the Ks band there would be also
some fraction of WFS in-field light reflected back through the filter but with a factor
10 in attenuation compared to the Y-Zsloan worst-case band. The sky background
being also higher (~13mag/arcsec?) in Ks band, no extra constraint would be derived
from the Ks band edge case.

22.3 Optical model description and results

22.3.1 Model assumptions

The same ASAP optical model as developed and used for previous ghost analysis
(see RD1) was updated here with the geometry of the WFS elements as per the
original Zemax model Tel+Cube16v.ZMX . The Zemax model was initially translated
into ASAP for comparison of the overall design post-translation with previously
validated ASAP model; then, the WFS components were extracted and implemented
in the previous ASAP model (after applying matrix transformations in order to
recover the orientation in the reference frame). Model geometry is displayed in

Figure 1 below.

The following science band reflectivity values were implemented:

- L1,L2, L3, window: R=1.5% per interface

- Science filter: front -> R=5%, back->R=0.5% (geometry of filter holder plate in
not implemented)

- WES filter: front (POM side) ->R=2%, back (beamsplitter side) ->R=98%

- FPA coating: R=20% assumed worst case at short science wavelengths and a
0.85mm thick detector substrate in highly refractive material (index taken as 3.7
to simulate HgCdTe or CdZnTe type of substrate) is implemented between the
image plane (detector active layer) and AR coating location.

The WFS filter is model as a 3mm thick element with refractive index 1.53 and some
simulations (see section 3.4) include the imaginary part of the optical constant as
the values in the above spreadsheet (see Table 1).
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CCD WFS POM vista ircam flat window modeld zband -2842.8,2737.7
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Figure 1: Model geometry used in the optical model

From the above considerations, nominal test wavelengths are 0.9um and 1.0um
with unpolarised point source illumination filling the VISTA telescope entrance pupil,
titled to hit the WFS at the centre of its FoV. Angle dependent Fresnel reflection
coefficients are used at every interface non-null reflectivity.

22.3.2 Ghost images at IRCAM focal plane

Below are presented a series of results from optical model ray-tracing. Splitting at
specific component is performed in order to identify the component responsible of
the most critical ghost (usually the smallest) on the FPA, after redirection of the
bright source flux back reflected from WFS filter. For each case, a view of the
geometric ray-trace impacts on the full FoV FPA and at a linear scale map of the
relative irradiance in the full FoV image (sampled on a grid with step size of 500um
or 25 FPA pixels, equivalent to ~8.6arsec on sky).
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- L3 only (i.e. all other IRCAM components assumed perfectly transmissive; both L3
surfaces set to R=1.5%):

Ghosts on FPA

Ghasts in VISTA-IRCAM from WFS elements 177.06,241.22

2.42e-007

X mm
FLUX [ sg-MM

i+ 9.27
I -253

-111.06,-241.22 mn

Multiple features are present on the geometric map but are actually to faint to be
seen on linear irradiance. A log scale plot would prove that they are present but
orders of magnitude fainter. The only half of the ghost is seen due to vignetting of
this defocused image by the WFS POM.

- L2 only:

Ghosts on FPA

177

Ghosts in VISTA-TRCAM from WFS elements 171.06,241,22

6.3e-008

X mm
FLUX / sg-MM

177

Y mm

++0.843
10843
] () 2.98e-008

1
[
-1T7.06,-241.22 1m

Most of the ghost images are large scale and/or of low irradiance level even if they
add as they superimposed on each other. The random red spots on the irradiance
map are artefact of the illumination source grid sampling.
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-L1 only:
Ghosts on FPA
Ghosts in VISTA-TRCAM from WFS elements 177.06,241.22 S g,
r ; - 8
=
=
=
= 7
£ -
> x
=1
T
I
A (=)
|+ 0.843
X i 0843
) 6.31e-008
7 _

-177.06,-241.22 mm

The irradiance map reveals more ghost images than the geometric raytrace but the
largest one is a diffuse large scale one. Again the smallest (incomplete shape due to
the shadow of the WFS POM) ghost on the left side is incomplete due to vignetting
by the WFS POM.

-Window only:

Geometrical Ray SPOTS

177

Ghosts in VISTA-IRCAM from WFS elements 177.06,241.22

2.83e-008

X mm
FLUX / sq-MM

7T

AT7 177

0
1o
(+)5.19¢-009

-177.06,-201.22 m & ase

The illumination is relatively uniform and spread over a large fraction of the entire
FPA. Shadow of the WFS POM is clearly visible in the ghost image. Strong localised
illumination is found at the extreme edge of the full FoV circular FoV due to reflection
back from the window into the cavity formed by WFS POM and the WFS filter. It is
assumed that this particular path is in reality blocked by the mounting structure of the
POM, the filter holder and/or the support structure surrounding the detector arrays at
the FPA.
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- All non-perfectly transmitting interfaces (including FPA coating and science filter
interfaces) taken into account:

Ghosts on FPA

177

4.03e-007

Xmm

FLUX / sq-MM

~
~
—

Y mm

- 0.843
1 0843
(=) 1.34e-007

Figure 2: Full FoV image at IRCAM FPA including the effect of imperfect
transmission for all camera elements

For comparison, below is shown the results of identical simulation but with the WFS
interference filter located in place of the broadband AR coating i.e. on the front
surface of the WFS filter. The pattern of defocused images is similar to the one
above: their shape and position of ghost images is dominantly determined by the
location of the filter device along the optical path in the system, not the level of
reflectivity at the filter interfaces.
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Ghosts on FPA

7.52e-007

FLUX / sq-MM

> 0.843
I 0843
() 2.32e-007

A

Figure 3: Idem as Figure 2 for the case of interference filter on the front surface of
the WFS filter (R~98%)

In both cases, the smallest brightest zone' (red zone, local irradiance peaks on the
extreme left leaking below the WFS POM and filter are not considered as an issue
here) in the above image is covering a surface equivalent to a disk of diameter
~235arcsec. Even the superposition of all brightest ghosts from individual component
(here mainly from reflections on L3 and L1) would lead to a ghost equivalent
magnitude Mgnost~Mstart19.1. Assuming a sky background in the 0.9-1.0um band of
the order of ~18.5mag/arcsec? (TBC), for celestial objects as bright as M=2 in the
WFS FoV, the ghost image at IRCAM FPA would still be estimated to be no brighter
than ~10% of the sky background.

22.3.3 Field positions

The above results were obtained for the central field position (Y=0.72288deg,
X=0deg). Point sources at other field positions were implemented to check for an
eventual displacement and shape variations of the ghost images. The other field
positions are taken as the corner ones defined in the Zemax model
Tel+Cube16v.ZMX and reproduced below.

! Possibly difficult to isolate anyway from the diffuse background due to the superimposition of a lot of ghost
images with close level or irradiance.
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WEFS edge field X (deg) Y (deg)
POS.
1 -0.065258 0.6584
2 0.065258 0.6584
3 -0.065107 0.78708
4 0.065107 0.78708

Results in section 3.2 above suggest using the case of “L1 only” as above to assess
the impact of different field positions. The 4 pictures below are respectively
associated with the above field positions.

Ghosts on FPA

177

1.46e-007

Ghosts on FPA

1.46€-007
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z0 1 0843
= 1.27e-007 M 2 1.23e-007
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Small displacement of the ghost images is found. The ghost with highest irradiance
level is not getting smaller in size. Secondary but smaller ghosts are still present only
for field positions 1 and 2. No worst effect is therefore detected for this case.

22.3.4 Case of real (absorbing) WFS filter substrate

The discussion in the above sub-sections deal with ideal filter substrate leading to a
worst-case scenario as from Table 1 one can see that at least the double pass
propagation in RG9 would be expected to be reduced by 20% minimum (i.e. at
900nm). Implementation of the absorption properties of the filter substrate was made
in the optical model and some illustrated results (full FoV irradiance map) are

displayed below.

Ghosts on FPA Ghosts on FPA

3.39e-008
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Y mm
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The attenuation through the WFES filter is reducing the number of ghosts on top of the
overall irradiance level attenuation. The smallest (half image due to the WFS POM
shadow) ghost is relatively more dominant over the large scale diffuse background of
superimposed fainter defocused images. Rapid estimation of the ghost magnitude
lead to Mgnost~Mstart22.4, meaning that, for object of magnitude M=1 or fainter, the
brightest ghost would still be ~1% or less of the sky background in Y-Zsloan bands.
If the interference filter coating is located on the front surface of the filter, an
increased by factor ~30 in illumination at FPA is expected leading to
Mghost~Mstart18.7 for the same main ghost image. In that case, it would be better to
avoid point source brighter than magnitude M=5 in the WFS FoV in order to maintain
a low level of ghost background at the FPA.

22.4 Conclusion

An estimation of the defocused images at IRCAM FPA (not for the WFS detectors)
generated by multiple reflections inside WFS filter and IRCAM elements was made,
based on an updated optical model. IRCAM focal plane images show the presence
of many ghost most of them of very large scale if not full FPA scale. The smaller and
brighter ones are found to be located close to the shadow formed by the WFS POM.
Their size is large enough so that they are not expected to generate large
background signal compared to IRCAM in-field sky background.

Quantitative approximate estimations of the equivalent induced ghost brightness
were performed in order to give an idea of the magnitude of the brightness object
allowed in the WFS FoV without inducing ghost on the IRCAM FPA larger than a
small fraction (typically 1%) of the science in-band sky background.

Reference document

RD1 VIS-TRE-RAL-06013-2002 Issue 1.0, Ghost analysis update for the flat-
window design (13/06/03)
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23 Appendix 10: Science Beam Clearance (Tony Richards)

The first picture shows the WFS STEP model imported into the 3-D CAD viewer along with

some detector beams.

) | | 1 |250| 1 | 1 I2DD| 1 | 1 |150| 1 | 1 |100 1 | I-50 1 1 |D 1 1 | 1 PD 1 1 | 1 |
g A
2
% \WFS and Autoguider beam|
| envelopes now terminating
] pick-off mirror] 4 | at pick-off mirror
y as given by
g STEP file
] Representation
i - of focal surface
=
] Detector#3 beam starts/is
. terminated 5 mm above
] camera focal surface
]
::: N z
| [Detector#3 beam is
| N shown terminated at
i i the rear surface of
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23.1 Clearance between Pick-off mirror and nearest detector beam

The next two pictures show slices through a detector beam where it passes closest to the edge
of the pick-off mirror. The first one shows the sectional plane through the autoguider part of
the WFS used beam where it is closest to the nearest detector beams.

The second picture is of a close-up view in the sectional plane, which shows the minimum
clearance between pick-off mirror and detector beam to be about 1 mm.
=) , i 1100 i i 7-9_5§4r3'_1 i i i i [ i i , 85

pick-off mirror
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The final picture is a plan view from above that shows the WFS beam that passes straight
through the beam splitter, terminating just in front of the WFS detector, and an Autoguider
beam path alongside.
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24 Appendix 11: Cube Beamsplitter Qualification Test

As described in sections 6.3 and 7.1, cube beamsplitter designs have been adopted for both
the low and high order curvature sensors. A qualification test of the beamsplitter has been
performed to allay fears of cracking or delaminating on cooling/warming.

A 40mm BK7 cube beamsplitter was subjected to repeated submersion in liquid nitrogen. In
each of ten runs, the cube was lowered into a tall dewar with ~1 litre of liquid nitrogen at the
bottom, over a period of approximately 10 hours (a descent rate of 1mm/min). The air
temperature gradient within the dewar was approximately linear apart from variations near to
the opening caused by turbulence. The air temperature gradient across the cube, before
submersion, was therefore approximately 13K at all times. After having been submerged in
liquid overnight, the cube was raised back up into ambient temperature air over a period of
approximately 5 hours.

This was regarded as a severe test for the cube to withstand and at least an order of magnitude
more severe than the cooling/warming rate to be incurred within the camera cryostat. The test
was performed using a BK7 cube primarily on the grounds of cost and availability but also as
BK7 has a CTE eight times higher than the fused silica which will be used in the actual
system. A 40mm cube was chosen to ensure the test was representative of the size of
beamsplitter in the chosen design.

The cube beamsplitter suffered no damage during the tests other than some very minor
chipping of the adhesive layer on the on the bottom surface of the cube which was always
lowered into the liquid first. Figure 1 depicts this. The top and corner edges of the adhesive
layer were completely undamaged.

The test is regarded as a complete success indicating that the adopted fused silica cube
beamsplitter design will function well and will not be damaged by cooling / warming cycles
within the camera cryostat.

A separate test is underway to investigate the performance of an identical BK7 cube which is
being cooled under vacuum, mounted in a dewar using beryllium retaining springs as per the
mechanical design. The results of this test are not available at the time of writing but can be
reported at the FDR is required. Both BK7 cubes will be made available for inspection at the
FDR.
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Figure 2:Cube Beamsplitter Qualification Test
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25 Appendix 12: LOCS/AG Alignment Analysis (Richard Bingham)

VISTA Low Order Curvature Sensor (LOCS)
Shifts of the LOCS parallel to the science focal plane

R. G. Bingham 1 March 2004

I carried out trials in which the whole LOCS assembly with its CCDs was moved in different
directions parallel to the science focal plane. For different positions of the assembly, I ray-
traced it to five field points in the LOCS field (corners and centre) and four field points in the
Autoguider field (the corners). As the assembly is moved, these nine field points are moved
with it, and so for example, they become further off-axis in the telescope for a shift in the
minus Y direction. I determined the wavefront aberrations at 800 nm, referring the
aberrations to the image centroids. This note reports the largest observed changes in the
peak-to-valley aberration at the various field points. The results are not dominated by focus

or tilt of the CCD.
The coordinate system is shown in Figures 1 and 2 overleaf.

The results are shown in Table 1.

Table I

Change in aberrations if LOCS is moved

Effect of shift on p-v wavefront
aberration at the most affected field
point
Wavelengths at 800 nm

LOCS Autoguider
X+ 1 mm +0.01 -0.04
X -1 mm +0.01 +0.03
X+ 5 mm +0.06 -0.16
X -5mm +0.06 +0.16
Y +1 mm -0.07 -0.05
Y - 1 mm +0.01 +0.04
Y + 5 mm -0.30 -0.17
Y -5 mm +0.29 +0.22
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Comments

1. The largest p-v aberration before introducing shifts was 1.78 waves at 800 nm in the
LOCS and 2.12 waves in the Autoguider.

2. It is not the case that an error in the +Y direction is desirable (to reduce aberrations).
The LOCS is close to the point where the edge of its first mirror clips rays that lead to
the extreme edge of the science field.

3. Possible tolerances would in the region of +/- one to three mm, except that (a) Y is
best toleranced plus zero to avoid clipping the science field, and (b) the tighter end of
such tolerances might be used of there is no cost implication.

4. Presumably the LOCS is fixed in position once calibrated.

<

Figure 1. View from
above the focal surface
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Figure 2. View from
below the focal
surface, showing the

field points used.
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26 Appendix 13: Sky Coverage Calculations

In this section we present the calculations to: validate the LOCS and AG fields of view;
evaluate possible operation of the AG after sunset; and validate HOCS star availability.

Rather than calculate the required star magnitude and hence probability of availability, we
have instead calculated the star magnitude providing 99% probability and calculated the
resulting signal to noise ratio from the use of that star brightness.
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26.1 Autoguider Field of View Validation

Wavelength

Sensor Wavelength Coverage

50% Cut-On 730nm
50% Cut-Off 910nm

pseudo-I
Telescope Properties
Telescope Diameter (m) 3.705
Telescope Central Obscuration Diameter (m) 1.635
Effective Collecting Area (m”2) 8.68
iz 3.26
Focal Length 12072.00
(mm)
Plate Scale 17.09
(arcsec/mm)
Throughput
Primary Reflectance 0.97
Secondary Reflectance 0.97
Camera Window,L1,L.2,L.3 Throughput 0.85
Pick-Off Mirror Reflectance 0.97
RG@GY Filter Transmittance 0.92
Short Pass Filter Transmittance 0.85
Autoguider Beamsplitter Transmittance 0.9
CCD QE in I-Band 0.85
Autoguider Total Throughput 0.46
Detector & Sky Properties
[-Band AMA 0.19
Wy 2491
(photons/second)
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Oth Magnitude in I-Band 2.55E+09
(nJy)
CCD Pixel Size 1.35E-02
(mm)
Pixel Area 1.8225E-10
(m”2)
Pixel Width 0.23066
(arcsec)
Pixel Area 0.05321
(arcsec”2)
Combined Autoguider Area on Sky 61.51
2040x2040 Pixels
(arcmin”2)
Autoguider Equivalent Radius on Sky 265.48
(arcsec)
FWHM including seeing
(arcsec)
Autoguider Star Image Area 59.05
(pixels)
Worst case sky brightness 16.7
[-Band, full moon 10° away
(mag/arcsec”2)
R17.2-R-10.5
Background Flux 532.77
(nJy/arcsec”2)
Background Flux 13270.04
(photons/sec/arcsec”2)
Background Flux At Autoguider 6158.49
(e-/sec/arcsec”2)
Background flux at autoguider 327.67
(e-/sec/pixel)
CCD Read Noise at IMHz
(e-)
CCD Dark Signal at 190K
(e-/pixel/second)
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Autoguider Properties
Autoguider Exposure Time 0.09
(seconds)
I-Band Guide Star Magnitude 15.2
99% Probability at Equivalent Radius near Pole
R 15.6 -R-10.5
Guide Star Flux 2121.00
(nly)
Guide Star Flux 52828.98
(photons/sec)
Guide Star Signal including Throughput 24517.41
(e-/sec)
Autoguider Signal/Noise Ratio 25.09
University of Durham Rutherford
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26.2 LOCS Field of View Validation

Wavelength
Sensor Wavelength Coverage 50% Cut-On 730nm
50% Cut-Off 910nm
pseudo-I
Telescope Properties
Telescope Diameter (m) 3.705
Telescope Central Obscuration Diameter (m) 1.635
Effective Collecting Area (m”2) 8.68
t/# 3.26
Focal Length 12072.00
(mm)

Plate Scale 17.09

(arcsec/mm)

Throughput
Primary Reflectance 0.97
Secondary Reflectance 0.97
Camera Window,L1,L.2,L.3 Throughput 0.85
Pick-Off Mirror Reflectance 0.97
RG@GY Filter Transmittance 0.92
Short Pass Filter Transmittance 0.85
Curvature Sensor Beamsplitter Transmittance 0.45
CCD QE in I-Band 0.85
Curvature Sensor Total Throughput 0.23

Detector & Sky Properties
[-Band AMA 0.19
Inly 2491
(photons/second)
University of Durham Rutherford
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Oth Magnitude in I-Band
(nJy)

2.55E+09

CCD Pixel Size
(mm)

1.35E-02

Pixel Area
(m”2)

1.8225E-10

Pixel Width
(arcsec)

0.23066

Pixel Area
(arcsec”2)

0.05321

Curvature Sensor Area on Sky
2008x1968 Pixels
(arcmin”2)

58.40

Curvature Sensor Equivalent Radius on Sky
(arcsec)

258.70

FWHM including seeing
(arcsec)

Worst case sky brightness
[-Band, full moon 10° away
(mag/arcsec”2)
R17.2-R-10.5

16.7

Background Flux
(nJy/arcsec”2)

532.77

Background Flux
(photons/sec/arcsec”2)

13270.04

Background Flux At Curvature Sensor
(e-/sec/arcsec”2)

3079.25

Background Flux At Curvature Sensor
(e-/sec/pixel)

163.83

CCD Read Noise at IMHz
(e-)

CCD Dark Signal at 190K
(e-/pixel/second)

LOCS Properties

Curvature Sensor Defocus
(mm)
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Curvature Sensor Image Diameter 31.39
Including Seeing
(pixels)
Curvature Sensor Image Area 774.01
(pixels)
Curvature Sensor Exposure Time 30
(seconds)
[-Band Guide Star Magnitude 15.4
99% Probability at Equivalent Radius near Pole
R 15.7-R-10.5
Curvature Sensor Star Flux 1764.17
(nly)
Curvature Sensor Star Flux 43941.23
(photons/sec)
Curvature Sensor Signal including Throughput 10196.35
(e-/sec)
LOCS Signal/Noise Ratio 149.56
P Rutherford
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26.3 Autoguider Operation After Sunset

Wavelength

Sensor Wavelength Coverage

50% Cut-On 730nm
50% Cut-Off 910nm

pseudo-I
Telescope Properties
Telescope Diameter (m) 3.705
Telescope Central Obscuration Diameter (m) 1.635
Effective Collecting Area (m”2) 8.68
t/# 3.26
Focal Length 12072.00
(mm)

Plate Scale 17.09

(arcsec/mm)

Throughput
Primary Reflectance 0.97
Secondary Reflectance 0.97
Camera Window,L1,L.2,L.3 Throughput 0.85
Pick-Off Mirror Reflectance 0.97
RGO Filter Transmittance 0.92
Short Pass Filter Transmittance 0.85

Autoguider Beamsplitter Transmittance 0.9
CCD QE in I-Band 0.85
Autoguider Total Throughput 0.46
Detector & Sky Properties
[-Band AMA 0.19
Inly 2491
(photons/second)
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Oth Magnitude in I-Band 2.55E+09
(nJy)
CCD Pixel Size 1.35E-02
(mm)
Pixel Area 1.8225E-10
(m”2)
Pixel Width 0.23066
(arcsec)
Pixel Area 0.05321
(arcsec”2)
Combined Autoguider Area on Sky 61.51
2040x2040 Pixels
(arcmin”2)
Autoguider Equivalent Radius on Sky 265.48
(arcsec)
FWHM including seeing
(arcsec)
Autoguider Star Image Area 59.05
(pixels)
Worst case sky brightness
(mag/arcsec”2)

(adjust until S/N is 7)

Background Flux 160894122.84
(uJy/arcsec”2)
Background Flux 4007487833.46

(photons/sec/arcsec”2)

Background Flux At Autoguider
(e-/sec/arcsec”2)

1859835483.37

Background flux at autoguider
(e-/sec/pixel)

98954305.47

CCD Read Noise at IMHz
(e)

CCD Dark Signal at 190K
(e-/pixel/second)

Autoguider Properties
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Autoguider Exposure Time 0.01
(seconds)
I-Band Guide Star Magnitude 9.23
(as bright as required)
(adjust until Total e- is 60,000)
Guide Star Flux 518251.04
(nJy)
Guide Star Flux 12908393.99
(photons/sec)
Guide Star Signal including Throughput 5990658.03
(e-/sec)
Total e- 59906.58
(assume in one pixel to avoid saturation)
Limit 60,000 e-
Autoguider Signal/Noise Ratio 7.83
Limit 7
University of Durham Rutherford
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26.4 HOCS Star Availability

Wavelength
Sensor Wavelength Coverage 50% Cut-On 1160nm
50% Cut-Off 1340nm
J
Telescope Properties
Telescope Diameter (m) 3.705
Telescope Central Obscuration Diameter (m) 1.635
Effective Collecting Area (m”2) 8.68
t/# 3.26
Focal Length 12072.00
(mm)
Plate Scale 17.09
(arcsec/mm)
Throughput
Primary Reflectance 0.97
Secondary Reflectance 0.97
Camera Window,L1,L2,L.3 Throughput 0.85
Filter Transmittance 0.8
Beamsplitter Transmittance 0.01
(Worst case - multiple reflection)
Detector QE 0.8
Curvature Sensor Total Throughput 0.01
Detector & Sky Properties
J-Band AMA 0.16
Inly 20.97
(photons/second)
Oth Magnitude in J-Band 1.60E+09
(uJy)
University of Durham Rutherford
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CCD Pixel Size 2.00E-02
(mm)
Pixel Area 4E-10
(m”2)
Pixel Width 0.34172
(arcsec)
Pixel Area 0.11678
(arcsec”2)
FWHM including seeing 1
(arcsec)
Worst case sky brightness 15.9
J-Band, full moon 10° away
(mag/arcsec”2)
R17.2-R-11.3
Background Flux 699.73
(uJy/arcsec™2)
Background Flux 14676.82
(photons/sec/arcsec”2)
Background Flux At Curvature Sensor 75.12
(e-/sec/arcsec”2)
Background Flux At Curvature Sensor 8.77
(e-/sec/pixel)
Detector Read Noise 15
(e-)
CCD Dark Signal at 190K 1
(e-/pixel/second)
HOCS Properties
Curvature Sensor Defocus 1
(mm)
Curvature Sensor Image Diameter 21.19
Including Seeing
(pixels)
Curvature Sensor Image Area 352.66
(pixels)
Curvature Sensor Exposure Time 60
(seconds)
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J-Band Guide Star Magnitude 8.4
99% Probability at 0.5° radius from Pole
R99-R-11.5
Curvature Sensor Star Flux 699734.88
(wJy)
Curvature Sensor Star Flux 14676818.92
(photons/sec)
Curvature Sensor Signal including Throughput 75123.24
(e-/sec)
HOCS Signal/Noise Ratio 2058.72
University of Durham Rutherford UK
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27 Appendix 14: LOCS Aberrations (Richard Bingham)

VISTA Wavefront Sensors
Aberrations with and without the LOCS beamsplitter
Richard G. Bingham 8 March 2004

Table I shows Zernike aberrations up to Z11 for the field centre of the LOCS at a wavelength
of 0.8 microns. In Table II, the beamsplitter is removed and moving the CCD detector
refocuses the instrument. Figures 1 and 2 overleaf show the aberrations in the form of spot
diagrams. In this case, three wavelengths are shown, 750 nm, 800 nm and 850 nm. In each
case a series of spot diagrams is shown to illustrate the effect of changing the focus position,
in steps of 40 microns.
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Table I

Listing of Zernike Standard Coefficient Data
With beamsplitter

Field : 0.0000, -0.7229 deg
Wavelength : 0.8000 microns
Z 1 0.086931 : 1
Z 2 -0.000000 4" (1/2) (p) * COS (A)
Z 3 -0.072023 4”(1/2) (p) * SIN (A)
Z 4 0.034197 3%(1/2) (2p*2 - 1)
Z 5 -0.000000 6% (1/2) (p*2) SIN (2A)
Z 6 0.048702 6% (1/2) (p™2) COS (2A)
Z 7 0.003418 8%(1/2) (3p”®3 - 2p) * SIN (A)
Z 8 -0.000000 8% (1/2) (3p”3 2p) * COS (A)
Z 9 0.107308 8% (1/2) (p™3) SIN (3A)
Z 10 0.000000 8% (1/2) (p”3) COS (3R)
zZ 11 -0.019264 5°(1/2) (6p™4 - 6p™2 + 1)
Table 11
Listing of Zernike Standard Coefficient Data
Without beamsplitter
Z 1 -0.692653 : 1
Z 2 -0.000000 : 4 (1/2) (p) * COS (A)
Z 3 -0.360540 4”(1/2) (p) * SIN (A)
Z 4 -0.277335 3%(1/2) (2p*2 - 1)
Z 5 -0.000000 6% (1/2) (p*2) SIN (2A)
Z 6 0.020370 6% (1/2) (p™2) COS (2A)
Z 7 -0.094390 8% (1/2) (3p™3 - 2p) * SIN (A)
Z 8 0.000000 8%(1/2) (3p™3 - 2p) * COS (A)
Z 9 0.105932 8% (1/2) (p”3) SIN (3A)
Z 10 -0.000000 8% (1/2) (p”3) COS (3R)
zZ 11 0.085421 5°(1/2) (6p™4 - 6p™2 + 1)
@ University of Durham Rutherford UK
Astronomical Instrumentation Group Appleton
Laboratory cLRC Astronomy Technology Centre



Vst

IR Camera

Wavefront Sensors
Subsystem Design

Doc. Number:

VIS-DES-UOD-06042-0001

Date: 8™ March 2004
Issue: 3.0

Page: Page 157 of 157
Author: Paul Clark

n [
+ }d“i‘, B ‘I. + '.,n- ,n-vg.‘, + & b ) .._'.c‘: A
L I + nx ¥ + =
2.8000, -0.7229 DEC + ".+ i * ' +++ 5 =2
* t*_' il o T2}
+ P, 1 ""' -0
& " Soat
¥ s i b
Lo By 48
oge
-8@ -H@ @ H@ BO@

SURFACE: TMA

THROUGH FOCUS SPOT DIAGRAM

VISTA LOCS FRONT-SURFACE MIRROR + ULE BEAMSPLITTER RGE 1203 RGB

MON MAR 8 2004 UNITS ARE MICRONS.

FIELD ' 1

RMS RADIUS 9.620

GED RADIUS : 30.196 16V_BS_1,7ZMx

SCALE BAR ! &5 REFERENCE ' CENTROID CONFIGURATION 1 OF 2
Figure 1. Through-focus LOCS spot diagrams with the beamsplitter.

Wavelengths are 750, 800 and 850 nm (blue, green and red). The focus step
is 40 microns. The field point used is the centre of the LOCS field. The
scale bar spans 65 microns.
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Figure 2. Through-focus LOCS spot diagrams without the beamsplitter. Details

as for Figure 1.
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